Plantilla de artículo 2013
Andean Geology 51 (2): 379-412. May, 2024
Andean Geology
doi: 10.5027/andgeoV51n2-3681

The Andean Southern Volcanic Zone:
a review on the legacy of the latest volcanic eruptions
*Jorge E. Romero1, Francisca Vergara-Pinto2, Pablo Forte3,
J. Tomás Ovalle4, Florencia Sánchez5

1 Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Av. Lib. Bernardo O'Higgins 611, Rancagua, Chile.

2 Humanitarian and Conflict Response Institute, University of Manchester, Oxford Road M13 9PL, Manchester, UK.

3 Observatorio Argentino de Vigilancia Volcánica (OAVV), Servicio Geológico Minero Argentino-Conicet, Av. General Paz 5445, Parque Tecnológico Miguelete, Ed. 25, San Martín (B1650 WAB), Argentina.

4 Escuela de Geología, Universidad Mayor, Av. Manuel Montt 367, Santiago, Chile

5 University of Minho, School of Sciences , Department of Earth Sciences, Campus de Gualtar, 4710-057 Braga, Portugal.

* Corresponding author:

The Andean Southern Volcanic Zone (SVZ) concentrates many of the most active volcanoes of the Andean continental arc, as well as the region’s most recent and impactful volcanic eruptions. In this contribution, we briefly revise the general characteristics of the SVZ volcanism and provide a synthesis of the scientific findings related to the latest volcanic eruptions (<35 years) in this arc segment. These eruptions alone have inspired >430 peer-reviewed publications with over 9,000 citations, with large-magnitude (VEI 4-5) eruptions being the most studied. Our study shows that SVZ research has been primarily focused on environmental and atmospheric impacts (29%), eruption descriptions and physical volcanology (20%), volcanic hazard and risk assessments (15%), and other investigations complementary to volcanology. Whereas the least silicic eruptions (e.g., Llaima 2008-2009 and Villarrica 2015) shed light on magma replenishment and degassing dynamics controlling eruption styles, intermediate eruptions (andesitic-dacitic) offered clues on either rapid or slow eruption initiation, with relevant findings on phreatic-to-magmatic style transitions and eruption triggering mechanisms. On the other hand, silicic (i.e., rhyolite-rhyodacite) eruptions provided unique observations on rapid magma ascent, high-rate magma extrusion, rheology, fragmentation processes, and style transitions. These recent eruptions have also inspired a new generation of tephrochronological, tephrostratigraphical, and physical volcanology studies, aimed at assessing the long-term (kyr-scale) evolution of the volcanic systems and their associated hazards. We debate how the knowledge gained from research and the long-term human coexistence with volcanoes are relevant to reducing volcanic risk in the SVZ. Finally, we discuss how challenges and opportunities emerging from other disciplines can complement our understanding of volcanism in this active region.

Keywords: Volcanic eruptions, Volcano monitoring, Volcanic ris, Southern Andes, Chile, Argentina.



1. Introduction

The Andes is an ~8,000 km-long, continuous mountain range formed by the subduction of the Nazca, Antarctic, and Scotia oceanic plates beneath the continental lithosphere of South America. During the last ~25 Myr, the spreading rate across the Pacific-Nazca plate boundary has been among the fastest on Earth, reaching 145±4 mm/yr around 30° S (DeMets et al., 2010). This has driven an oblique convergence of the Nazca Plate at rates >66 mm/yr between ~7 and 46 ° S (Angermann et al., 1999; DeMets et al., 2010), that ultimately controls the dehydration of the subducting slab and mantle metasomatism to produce partial melts. The resulting Andean volcanic arc has been conceptually divided into four Quaternary active segments, all separated by regions that lack modern volcanic activity. These segments are the Northern (NVZ; 5°N-2°S), Central (CVZ; 13 -27° S), Southern (SVZ; 33-46° S), and Austral (AVZ; 49°-55° S) volcanic zones (Stern, 2004) (Fig. 1).


FIG. 1. Tectonic setting of the SVZ. A. Map of the SVZ, its active stratovolcanoes and volcanic complexes (red triangles). SVZ segmentation after Hickey-Vargas et al. (2016). The Liquiñe Ofqui Fault System (LOFS) and the major Andean Transversal Faults (ATFs) are also indicated. Thick black dotted solid lines in the Nazca plate represent fracture zones (Weller and Stern, 2018). Plate motion rates and azimuths (arrows) from Kendrick et al. (2003), DeMets et al. (2010), and Jia and Wei (2021). Base topography from ETOPO Global Relief Model-Bedrock 30 arcsecond hillshade (NOAA National Centers for Environmental Information, 2022)1. B. Close up of the Diamante caldera and Maipo volcano. C. Distribution of rhyolite-dominated volcanoes in the Transitional Southern Volcanic Zone, based in Hildreth et al.  (1999, 2010) and Silva-Fragoso et al. (2021). The central, unlabelled map in the figure offers background tectonic information of the Andean volcanic arc and its active segments (Northern, NVZ; Central, CVZ; Southern, SVZ; and Austral, AVZ).


The northernmost SVZ is part of a prominent orogen (<7,000 m a.s.l. at ~33° S) that decreases in altitude towards the south (<2,000 m a.s.l. at ~40°S), from where volcanoes stand out from the rest of the mountains. Compared to the CVZ and the AVZ, the SVZ concentrates the largest volcanic edifices, the highest number of reported eruptions since the European colonisation (mid-16th Century), and the largest eruptions in Holocene times (Simkin and Siebert, 1994; Stern, 2004; Stern et al., 2007). The SVZ hosts a total of 57 active volcanoes, primarily located along the western flank of the Andean range (Amigo, 2021; García and Badi, 2021) (Fig. 1). Here, the term “active volcano” includes all the volcanoes with Holocene eruptive activity or instrumentally recorded signs of unrest, such as active degassing, seismicity, or surface deformation (Szakács, 1994; Lara et al., 2021). Of the 57 SVZ volcanoes, 41 are based in Chile, 9 in Argentina, and 7 are on the international border between these two countries. The SVZ comprises 55 and 42% of the Chilean and Argentinian active volcanoes, respectively.

Several reviews focused on SVZ volcanism have been written in the last decades (e.g., Stern, 2004; Stern et al., 2007; Tilling, 2009). However, particularly in the last ~15 years, volcanic eruptions in this arc segment have been systematically studied by the volcanological community, producing mounting evidence stored in a wide variety of formats. As these studies have provided new insights and ideas about volcanic processes and their associated impacts, some with worldwide implications, a holistic review for an up-to-date understanding of the SVZ volcanism is deemed necessary. In this contribution we therefore briefly revise the main characteristics of the SVZ, including their tectonic setting, arc segmentation, and petrogenesis. Our main goal is to assess the influence of recent (<35 years) SVZ eruptions on scientific production and their legacy for a deeper understanding of SVZ volcanism, specifically regarding to eruption mechanisms, dynamics, and impacts. We also provide a local retrospect on the progress of volcanology, volcano monitoring, and exposure and social vulnerability to critically discuss possible further steps for disaster risk reduction. Our review finally deals with aspects of the SVZ that are yet understudied, and which could offer valuable insights to a broader understanding of volcanism. While this work does not intend to be an exhaustive review of all existing SVZ literature it does provide a refreshed compendium of peer-reviewed sources and the learnings arisen from SVZ recent eruptions based on 328 contributions cited in this work.

2. The Andean Southern Volcanic Zone

2.1. Tectonic setting

The SVZ is limited to the north (~33° S) by the Pampean flat slab segment, traditionally associated with the subduction of the Juan Fernández Ridge (JFR), an oceanic hotspot track (Fig. 1A) that represents a thicker oceanic lithosphere with increased buoyancy (Espurt et al., 2008; Porter et al., 2012; Pilger, 2024). At the other end (~46° S), the southern limit of the SVZ is marked by the Chile Triple Junction, a place where the Nazca-Antarctica active Chile Ridge meets the western margin of South America (Fig. 1A). While north of 33° S, the oceanic slab subducts at an angle of 30° near the trench and then flattens to <10° at slab depths of 100-150 km for several hundred kilometres east, between 33 and 36° S the slab subducts at an angle of 25-30° (Cahill and Isacks, 1992; Anderson et al., 2007) and 30-33° further to the south (Lange et al., 2007). Along the SVZ segment (33-46° S), the Nazca plate subducts at a rate of ~67-84 mm/yr (Fig. 1A; Kendrick et al., 2003; Jia and Wei, 2021).

The oceanic crust is pervasively fractured by bending-related normal faults and fracture zones that facilitate fluid percolation to mantle depths, weakening the oceanic lithosphere prior subduction (Fig. 1; Ranero et al., 2005). In the continent, two regional fault arrangements accommodate the strain partitioning due to oblique convergence: the Liquiñe-Ofqui Fault System (LOFS), and the Andean Transverse Faults (ATFs). The LOFS is a NS- to NNE-striking intra-arc fault system of continental scale (~1,200 km long) with dextral and dextral-reverse kinematics, and minor NE- to ENE-striking secondary faults with dextral, dextral-reverse, and dextral-normal kinematics (Cembrano et al., 1996, 2000; Arancibia et al., 1999; Lavenu and Cembrano, 1999; Lange et al., 2008; Roquer et al., 2022). The ATFs are NW-SE faults striking 30 to 60° away from the main trend of the arc (Stanton-Yonge et al., 2016). Altogether, these regional fault systems are first-order factors controlling most of the distribution and nature of the SVZ volcanism (Cembrano and Lara, 2009). While the NE- and ENE-trending volcanic structures are associated with tension fractures, extensional-shear fractures, or tail cracks, along with more primitive magmas erupted, the NW-trending, ATF-related volcanic structures can serve as transient magma pathways allowing the eruption of more evolved magmas (López-Escobar et al., 1995; Cembrano et al., 1996; Cembrano and Lara, 2009; Stanton-Yonge et al., 2016). The intersection of ATFs structures with LOFS structures are considered high-permeability and structural damage zones that may facilitate the emplacement of volcanic centres, hydrothermal systems, intrusive bodies, and Cu-Mo-Au ore deposits (Roquer et al., 2017; Piquer et al., 2019; Pearce et al., 2020; Vigide et al., 2020; Pérez-Estay et al., 2023). According to Lara et al. (2008), LOFS master faults with visible vertical offsets display numerous small eruptive centres on top, probably formed after transient vertical adjustments, either by isostatic rebound or transpressional-induced uplift. In these areas, monogenetic cones exhibit ~NE-SW elongated bases, a direction that coincides with the maximum regional stress direction (Lara et al., 2008). Analogous modelling has shown that transpressional deformation is distributed between 34 and 42° S in the SVZ, as indicated by margin-parallel dextral oblique-slip thrust faults and sinistral oblique-slip reverse faults (Eisermann et al., 2021). This observation defies the hypothesis of kinematic partitioning and deformation localised in a few margin-parallel faults, particularly along the LOFS (e.g., Arancibia et al., 1999; Cembrano et al., 1996), and prescinds from margin-oblique, pre-Andean crustal structures behind the emplacement of volcanic chains.

In the region, the occurrence of megathrust earthquakes recorded since ~1550 CE has temporarily increased the number of eruptions in volcanoes located up to 500 km from the limits of their rupture zones (Watt et al., 2009a), most likely by inducing static stress changes in volcanoes with shallow magma chambers under unclamping or very weak clamping conditions (Bonali et al., 2013). One of the most famous examples of the relationship between megathrust earthquakes and volcanic eruptions is the 1960 Puyehue-Cordón Caulle Volcanic Complex (PCCVC) eruption, which took place ~38 h after the Mw 9.5 Valdivia earthquake (Lara et al., 2004). Additionally, ground deformation and increased degassing have been observed at active SVZ volcanoes after megathrust earthquakes (e.g., Tinguiririca, Planchón-Peteroa, Cerro Azul, and Nevados de Chillán; Pritchard et al., 2013). Complementary studies have shown that the state of the volcano before the main shock, the geometry of the volcano’s fault system, and the incidence angle of the incoming seismic energy are relevant factors controlling the volcanic response after large-magnitude earthquakes (Farías et al., 2014; Bonali et al., 2015; Farías and Basualto, 2020). NW-striking faults (i.e., ATFs) can be affected by transient stress changes induced by megathrust earthquakes, affecting magma ascent and eruption (e.g., Lupi et al., 2020; Franco-Marín et al., 2023).

2.2. Volcanic arc segmentation

Several studies have recognised and characterised along-arc geochemical variations in the SVZ. Initially, Moreno (1975, 1976) proposed a segmentation of the SVZ into Northern (33-37° S) and Southern (37-46° S) based on petrographic characteristics and magma compositions. Since then, more detailed segmentations have been postulated based on geochemical, petrological, and tectonic criteria (Hickey et al., 1984, 1986; Stern et al., 1984; Hildreth and Moorbath, 1988; Stern, 1991; Tormey et al., 1991; López-Escobar, 1993, 1995; Dungan et al., 2001; Naranjo and Stern, 2004). Along-arc geochemical variability has been explained by lower-crust differentiation (e.g., Hildreth and Moorbath, 1988), source-region contamination by terrigenous±pelagic sediments and intra-crustal contamination (Stern et al., 1984; Stern, 1991), and different degrees of mantle melting or chemical variations in the mantle column (e.g., Tormey et al., 1991). Recently, Hickey-Vargas et al. (2016) suggested that the main controlling factors behind this geochemical variability are the thickness of the continental crust and mantle lithosphere, and the heterogeneities of the subducting Nazca plate and overlying asthenosphere (for example, an enriched or depleted mantle asthenosphere). Based on the observed along-strike REE and isotope geochemical variations, and considering also the role of the LOFS in the control of volcanism, Hickey-Vargas et al. (2016) proposed a new segmentation for the SVZ: Northern (NSVZ; 33-34.5° S), Transitional (TSVZ; 34.5-38° S), Central (CSVZ; 38-41.5° S) and Southern (SSVZ: 41.5-46° S) (Fig. 1A). The Moho becomes shallower from north to south (average depth of ~50 km under the NSVZ to ~40 km under the SSVZ), as does the depth of the intracrustal discontinuity (from ~10 to 5 km; Tassara and Echaurren, 2012). Interestingly, magma storage depths for the main stratovolcanoes become increasingly deeper towards the south (Bechon et al., 2022).

The age of the subducting plate, which decreases southwards, does not significantly influence magma extrusion rates, and presumably, the hottest slab segments are not necessarily the more magmatically productive (Völker et al., 2011). For example, in the Hickey-Vargas et al. (2016) SVZ segmentation scheme, the TSVZ volcanoes show the lowest magma production rates because of protracted asthenosphere melt interaction with the mantle lithosphere.

2.3. Petrogenesis

The wide range of magma compositions erupted in the SVZ -from basalts to rhyolites- has been explained by fractional crystallisation of basaltic magmas, upper-crustal assimilation, and/or mixing between basaltic and rhyolitic magmas (Hickey et al., 1984, 1986; López-Escobar, 1984, 1993; Rudnick, 1995; Singer et al., 2008; Hickey-Vargas et al., 2016).

The basaltic magmas erupted in the SVZ contain signatures from the subducted oceanic lithosphere, subarc mantle, and continental crust (Hickey et al., 1986). Regionally, the asthenospheric mantle wedge contains mobile elements (i.e., 10Be/9Be and U-series isotopes; Hickey-Vargas et al., 2002; Kilian and Behrmann, 2003) transferred from subducted pelagic sediments over diverse timescales (104-107 years). Hickey-Vargas et al. (2016) distinguished two types of SVZ basalts: Type 1, voluminous, subduction-related magmas fed by inputs from the subducted oceanic plate and asthenospheric melting; and Type 2, small-volume batches of magma produced by partial melting of aged, subduction-related pyroxenite in the subarc mantle. Their occurrence depends on the relative degree of fluid contribution from the subducting slab to the overlying asthenospheric wedge, or the interaction between asthenosphere-derived magmas with the continental lithosphere during ascent, the latter enhanced by the higher permeability around the LOFS.

At large, long-lived stratovolcanoes, mafic rocks can be either produced by water-poor (~1 wt.%) tholeiitic magmas, as in Osorno or Antuco (Martínez et al., 2018; Bechon et al., 2022), or by highly water-saturated magmas, as in Nevado de Longaví, Calbuco, Huequi, and Mentolat, which are probably the only ones whose products document hornblende and garnet fractionation from mafic magmas (Watt et al., 2011; Hickey-Vargas et al., 2016; Weller and Stern, 2018; Sellés et al., 2022). The presence of hydrous minerals indicates relatively high-water contents in the subarc mantle, probably due to the subduction of a locally fractured oceanic crust (Weller and Stern, 2018; Sellés et al., 2022). At stratovolcanoes, mixing between different magma batches has influenced the evolution of their magma suites (e.g., Mella, 2009; Schindlbeck et al. 2014; Boschetty et al., 2022). In contrast, magmas erupted at isolated clusters of small eruptive centres (e.g., Caburgua-Huelemolle, Carrán-Los Venados, and Fui) have undergone variable crustal contamination prior to olivine crystallisation, and show evidence of more extensive partial melting at their source regions followed by a rapid ascent, possibly due to a high fluid input from the subducting slab (Hickey-Vargas et al., 2002; Bucchi et al., 2015; Morgado et al., 2015; McGee et al. 2017; Mallea-Lillo et al., 2022). These clusters are associated with shallow transient magma reservoirs whose eruptibility depends on magma input rates (Morgado et al., 2017). Rawson et al. (2016a) recognised that small eruptive centres around the Mocho-Choshuenco composite stratovolcano become more mafic with distance from it because of fractional crystallisation processes. In addition, small eruptive centres lying east of the main volcanic arc front are enriched in incompatible elements, probably due to unmixed primitive melts arising through relatively peripheral reactive channels in the mantle wedge (Rawson et al., 2016a).

Although most mafic products have erupted as lavas, with relatively low production of tephra, mafic ignimbrites are recognised at Llaima and Villarrica volcanoes (e.g., Naranjo and Moreno, 1991; Clavero y Moreno, 1994; Lohmar et al., 2007, 2012; Silva Parejas et al., 2010; Marshall et al., 2022; Valdivia et al., 2022). Rapid magma ascent, magma mixing events, and magma-water interaction have been invoked to explain the exceptionally explosive nature of those mafic eruptions (e.g., Lohmar et al., 2012; Pioli et al., 2015; Valdivia et al., 2022).

In the region, the formation of andesitic magmas has been attributed to the mixing of primitive magmas and lower crustal components, either during magma ascent or at the mantle source region by subduction processes (Stern et al., 1984; Hildreth and Moorbath, 1988). Other studies argue that andesitic and dacitic magmas are produced by polybaric fractional crystallisation of initially mafic magmas (for example at Nevado de Longaví, Nevados de Chillán, and Descabezado-Quizapu; López-Escobar et al., 1997; Rodríguez et al., 2007; Ruprecht et al., 2012; Oyarzún et al., 2022). The existing magmatic reservoirs can be affected by occasional mafic recharge events, which can sometimes drive Plinian eruptions, as in the Quizapu (Ruprecht, et al., 2012) and Mocho-Choshuenco (Feignon et al., 2022) volcanoes via “recharge filtering”, a model usually applied to arc settings (Kent et al., 2010; Kent, 2014). The fractionation of parent magmas, assimilation of crustal rocks, and mixing processes within multiple shallow crustal reservoirs can also produce andesites and dacites, as in the Tatara-San Pedro (Davidson et al., 1987, 1988; Dungan et al., 2001; Ferguson et al., 1992; Singer et al., 1997) and Lonquimay (Gilbert et al., 2014) volcanoes. Despite the thinning of the continental crust towards the south, crustal assimilation, particularly at lower crustal depths, is still a relevant mechanism for intermediate magma production (e.g., Hildreth and Moorbath, 1988; McMillan et al., 1989). Calbuco volcano represents an unusual case, as it presents a stationary storage zone at intracrustal discontinuity depths (after Tassara and Echaurren, 2012), where the primary basaltic magmas fractionate to form andesites and eventually dacites prior to volatile saturation and eruption (Vander Auwera et al., 2021).

The most evolved magmas from the SVZ, rhyodacites to rhyolites, have been recognized at the Diamante Caldera and at the Descabezado-Quizapu, Laguna del Maule, Puelche, Domuyo, PCCVC, Chaitén, and Yate volcanoes (see Fig. 1 for locations). Trace element and isotopic compositions of the Pudahuel/Diamante Ignimbrite pumices (132±2 ka; Klug et al., 2022) suggest a strong crustal component combined with extensive crystal fractionation (Stern et al., 1984; Futa and Stern, 1988; Sruoga et al., 2005, 2012; Holm et al., 2011; Pineda et al., 2021). At Laguna del Maule, parental basaltic magmas mixed with lower crustal components, forming a rhyolitic suite via mingling, mixing, hybridization, and fractional crystallisation in the upper crust (Andersen et al., 2017). On the other hand, the rhyolites from the Puelche volcanic field fractionated from a hybrid parent rather than continuously from basaltic magmas (Hildreth et al., 1999). These TSVZ rhyolites show higher crustal contributions than their southernmost SVZ counterparts (Hildreth et al., 2010). In fact, the PCCVC and Chaitén silicic magmas formed by melt extraction from mafic crystal mushes, in some cases during a single-step differentiation at upper crustal depths (Singer et al., 2008; Pallister et al., 2013; Seropian et al., 2021; Winslow et al., 2022).

3.  The SVZ as a knowledge hub for the volcanology community

3.1.  The influence of the recent SVZ eruptions in the volcanological literature

We carried out a bibliometric analysis to provide a snapshot of the contributions of recent SVZ eruptions to the volcanological knowledge for the period 1989-2020. On 13 March, 2023, we searched in the Scopus database ( by entering the name of the volcano, adding “eruption” (or “erupción” to include results in Spanish), and filtering peer-reviewed contents related to confirmed eruptions according to the Global Volcanism Program catalogue ( We dismissed all publications focused on topics other than on these recent eruptions.

Nearly 430 peer-reviewed contributions have been published in scientific journals, accounting for >9,000 citations (see Supplementary Table 1 for a detailed description of each paper). These contributions show the widespread impact of SVZ eruptions in the scientific community. The most studied eruptions correspond, in decreasing order of publications, to the VEI 4-5 PCCVC (2011-2012), Chaitén (2008-2009), Calbuco (2015), and Hudson (1991) eruptions (Fig. 2A). Notably, scientific publications about Chaitén are the most cited (>2,700), followed by PCCVC (>2,000), and Hudson (>1,350). In comparison, the largest SVZ eruption of the 20th Century, the VEI >5 1932 Quizapu eruption, remains barely studied and poorly cited (Fig. 2A). On the other hand, modest (VEI ≤3) eruptions such as those at Lonquimay (1988-1990), Llaima (2008-2009), Planchón-Peteroa (2010-2011, 2018-2019), Villarrica (2015), and Nevados de Chillán (2016-2022) have been scarcely studied (<15 contributions each), despite their comparatively longer eruptive cycles. Of these, the only exception is the Copahue 2012-2021 eruptive cycle, with over 32 publications. All these VEI ≤3 eruption contributions show a similar number of citations (≤300). Paradoxically, while Villarrica ranks highest in the Chilean volcanic threat ranking (, scientific literature about its 2015 eruption remains limited and, in part, available as non-peer-reviewed contributions written in Spanish, which were not systematically considered in this article.


FIG. 2. Peer-reviewed publications related to recent volcanic eruptions in the SVZ (1932 Quizapu eruption is also included for comparison). A. Number of contributions and citations by eruptive event. B. Number of contributions and citations by journal. C. Trends of productivity and citations by language. Data acquired from Scopus on 13 March 2023.


The journals that have hosted most of the revised contributions are the Journal of Volcanology and Geothermal Research (46), the Bulletin of Volcanology (29), and the Journal of Geophysical Research (23) (Fig. 2B). These journals are also the most cited regarding articles about recent eruptions. South American-specific journals, such as the Journal of South American Earth Sciences and Andean Geology are within the top 10 in the ranking of total contributions and citations (Fig. 2B), particularly because of special issue publications (e.g., Agusto et al., 2022). In general, papers about recent and impactful SVZ eruptions are published and cited within the first eight years after the event. Afterwards, these metrics show a more modest growth trend (Fig. 2C).

The SVZ eruptions have inspired works on a wide range of topics and fields, such as environmental and atmospheric impacts (29%), eruption descriptions and physical volcanology (20%), volcanic hazard and risk assessments (15%), remote sensing (15%), petrology and geochemistry (12%), and geophysics and structural geology (9%) (Fig. 3A). Figure 3B shows that the eruption descriptions and physical volcanology articles are the most cited with 34%, while environmental and hazard/risk-related studies together represent 36%. These numbers indicate that publications about recent SVZ eruptions with a focus on eruptive mechanisms, dynamics, and impacts (deepened in sections 3.2 and 3.3) are attractive to the volcanological community. Recent studies have also contributed to the understanding of the social dimensions of volcanic risk, such as territorial vulnerabilities, knowledge gaps, capacity-building, disaster policy, decision-making, volcanic risk perceptions, conflicts, and political tensions, among others (Radovich, 2013; Larenas, 2014; Espinoza, 2015; Romero and Romero, 2015; Sandoval et al., 2015; Petit-Breuilh, 2016; Forte et al., 2022, 2024; Alegría and Vergara-Pinto, 2024).


FIG. 3. Pie charts on the most published (A) and cited (B) topics for peer-reviewed articles on recent SVZ eruptions. Data acquired from Scopus on 13 March 2023.


3.2.  New perspectives on eruption mechanisms and dynamics

In the SVZ, recent mafic eruptions (i.e., basaltic to basaltic andesite) brought a renewed understanding of magmatic systems feeding mildly explosive events. Direct observations provided chronologic descriptions of their development, eruptive phases, products, and hazards (e.g., Moreno and Fuentealba, 1994; Romero et al., 2014, 2018; Franco et al., 2019). The 2008-2009 Llaima volcano eruptions, and some of its previous eruptive cycles (Fig. 4A), involved a magmatic system that replenished regularly (Bouvet de Maisonneuve et al., 2012); although in 2008-2009 the most explosive eruptive pulses occurred through extensive recharge events that remobilised the magma mush and the gas accumulated in the reservoir (Ruth et al., 2016). A similar model was invoked for the 1921, 1948, and 1971 Villarrica eruptions (Pizarro et al., 2019). These mechanisms imply that changes in the degassing system, and not necessarily rapid magma ascent rates, might control explosivity at open-vent volcanic systems (Ruth et al., 2016; Aiuppa et al., 2017; González-Vidal, 2022; Romero et al., 2022). For instance, the rising of large gas slugs sourced an unsteady lava fountain at Llaima in 2008 (Ruth and Calder, 2014), whereas the steady, 1.5 km-high lava fountain of Villarrica in 2015 (Fig. 4B) likely resulted from a foamy magma flow in the conduit (Romero et al., 2018). Such pre-eruptive changes can be long-term (months to years) and involve geophysical and surface precursory signals when reaching the shallow crust (e.g., Aiuppa et al., 2017; Ruth et al., 2018; Franco et al., 2019). Furthermore, lava lake samples from the 2015 Villarrica eruption were used by Moussallam et al. (2023) to set up a basaltic andesite geothermometer that can be applied to similar open-vent systems at anhydrous conditions.



FIG. 4. Recent eruptions of SVZ volcanoes. A. Strombolian eruption at Llaima in 2009. B. Lava fountain at Villarrica in 2015 (J. Rodríguez). C. Phreatomagmatic eruption at Copahue in 2012 (M. Meriño). D. Phreatomagmatic eruption at Planchón-Peteroa in 2018-2019 (E. Berríos). E. Sub-Plinian Calbuco eruption in April 2015 (C. Valenzuela). F. Lava dome at Nevados de Chillán in 2017 (N. Luengo). G. Plinian eruption at Chaitén in May 2008. H. Sub-Plinian eruption at the PCCVC in June 2011. I. Hybrid silicic eruption at the PCCVC in February 2012. Photos A, G, and H by D. Basualto.

Other mafic eruptive cycles, such as the 2000 and 2012-2021 at Copahue (Fig. 4C), the 1991, 2010-2011 and 2018-2019 at Planchón-Peteroa (Fig. 4D), or the 2011 short-lived eruption at Hudson, provided excellent natural examples of phreatic-to-magmatic eruptive transitions and a valuable opportunity to track them using volcanic ash sampling, petrology, remote sensing, and geophysics (e.g., Naranjo and Haller, 2002; Naranjo and Lara, 2004; Naranjo and Polanco, 2004; Delgado et al., 2014; Petrinovic et al., 2014; Aguilera et al., 2016; Caselli et al., 2016; Daga et al., 2017; Romero et al., 2020a).

The mesosilicic (i.e., andesite-dacite) SVZ eruptive products have also provided insights into magma storage, ascent, and eruption. For example, the sub-Plinian eruption of Calbuco in 2015 (Fig. 4E) which lacked clear precursors, involved rapid reservoir overpressuring either by a second boiling event driven by SO2 and CO2 exsolution (Pardini et al., 2018; Arzilli et al., 2019) or underplating of the magma chamber by a possibly mafic and hotter magma (Morgado et al., 2019a, b). A combined model was also deemed plausible (Namur et al., 2020). Similarly, the dacitic effusive eruption at Nevados de Chillán in 2008 lacked any relevant precursors (Coppola et al., 2016). In contrast, the 2004 and 2016-2022 eruptions at this same volcano (Fig. 4F) offered great advantage to track a complete eruptive cycle, from its precursory signals and first surface manifestations of volcanic activity, through the progression of magmatic activity (lava extrusion and collapse), to its final waning stages (Moussallam et al., 2018, 2021; Benet et al., 2021; Cardona et al., 2021; Astort et al., 2022).

Scientists had not witnessed a rhyolite eruption before the 2008 Chaitén (Fig. 4G) and 2011-2012 PCCVC (Fig. 4H, I) events. Therefore, these eruptions offered a unique observational window to understand silicic volcanism. The 2008 Chaitén eruption demonstrated that high-silica eruptions could be preceded by little warning as magma can ascend rapidly (~1 m/s), reaching the surface in a few hours (Castro and Dingwell, 2009; Wicks et al., 2011) and without measurable ground deformation (Delgado et al., 2022). At the PCCVC, high-silica magma erupted at relatively high temperatures through a dyke (~870-920 °C; Castro et al., 2013). Petrologic experiments on Chaitén samples showed that magma H2O content and temperature during magma-ascent driven decompression and vesiculation may dictate whether a high-silica eruption will have an effusive or explosive behaviour (Forte y Castro, 2019). Investigations at Chaitén carried out some years earlier (Alfano et al., 2012) revealed that rapid decompression induced by the failure of the pre-existent dome ultimately triggered magma nucleation and explosive fragmentation. The Chaitén dome-forming stage also revealed unprecedentedly high extrusion rates (~65 m3/s) for silicic magmas (Pallister et al., 2013), an observation that was also recognized for the PCCVC rhyolitic lava flow emplaced in 2011-2012 (~70 m3/s; Bertin et al., 2015a). The simultaneous explosive-effusive activity observed in these two eruptions has challenged the classic models for silicic eruption dynamics (e.g., Schipper et al., 2013; Tuffen et al., 2013; Wadsworth et al., 2022). Mechanisms such as outgassing through magmatic fracturing and localized fragmentation and welding within the conduit may have played a role in sustaining hybrid activity and facilitating explosive-effusive transitions (Schipper et al., 2021; Crozier et al., 2022; Wadsworth et al., 2022). Both silicic eruptions were likely sourced from multiple bodies of magma as suggested by geodetic data (Delgado et al., 2022) or tephra geochemistry (Alloway et al., 2015).

In terms of volcanic hazards, dilute PDCs (<200 °C) during the Chaitén eruption were both produced by eruptive column and lava dome collapse. and imprinted forest disturbance (Fig. 5A) with velocities up to 40 m/s (Major et al., 2013; Swanson et al., 2013). In contrast, little or no research has been carried out on the PDCs produced by the paroxysmal phase of the PCCVC eruption in 2011 (Fig. 5B). At Calbuco, PDCs occurred during the two eruptive pulses, reaching ~540-603 °C and velocities up to 36 m/s, which caused extensive damage to trees (Fig. 5C; Romero et al., 2023). Mixed avalanches formed by the interaction between PDCs, spatter agglutinates and ice were observed and described in the recent Llaima and Villarrica (Bertin et al., 2015b; Vera and Palma, 20172; Breard et al., 2020).


FIG. 5. Proximal and distal impacts produced by PDCs, tephra fallout, and lahars during the Chaitén, PCCVC, and Calbuco eruptions. A. Toppled trees in the northern flank of Chaitén, inside the blast zone (D. Basualto). B. Scorched zone in the northern PCCVC area (F. Swanson). C. Tipped trees at the Tepu River, Calbuco volcano (J.E. Romero). D, E. Ash fall deposits from Chaitén (S. Watt) and PCCVC eruptions (M.A. Rabhasnl). F. Roof collapsed by tephra overload at Ensenada, near Calbuco volcano (D. Spatafore). G. Flooding of Chaitén after lahars down the Chaitén river (Gobierno de Chile). H. Hyperconcentrated lahar floods nearby Lago Chapo, south from Calbuco volcano (M. Mella).


Tephra fall deposits are the most studied products from SVZ recent eruptions. Tephra dispersed and deposited during the Chaitén and PCCVC eruptions (Fig. 5D, E) caused extensive regional impacts and long-term episodes of ash remobilisation (Table 1; Martin et al., 2009; Bonadonna et al., 2015; Pistolesi et al., 2015; Elissondo et al., 2016; Forte et al., 2018; Domínguez et al., 2020). The 2015 Calbuco eruption produced heavy scoriaceous tephra (Romero et al., 2016) that caused roof collapses at proximal areas (Fig. 5F; Hayes et al., 2019). Although tephra deposited in Argentina during this eruption was ˂1 cm-thick, resuspension events exacerbated the impacts of primary fallout (Reckziegel et al., 2016). The erupted volumes of these eruptions (Table 1) are modest compared to the Quizapu 1932 and Hudson 1991 eruptions, whose tephra deposits blanketed the extra-Andean region and reached the Atlantic Ocean, affecting multiple countries (Hildreth and Drake, 1992; Naranjo et al., 1993; Scasso et al., 1994; Wilson et al., 2011). The Chaitén and Calbuco eruptions were accompanied by lahars with remarkable impacts on public and private property (Table 1; Fig. 5G, H).

3.3. Recognising past explosive eruptions

As summarized in Table 1, explosive SVZ eruptions have produced the most remarkable impacts on Andean communities. Recent eruptions have inspired detailed tephrostratigraphy and tephrochronology research in the SVZ, unravelling previously unknown eruptions and expanding the late Pleistocene-Holocene eruptive history of several volcanoes. These findings have refined our understanding of volcanic hazard and the long-term (kyr-scale) evolution of this volcanic segment. For the last ~25 kyr, at least 25 significant (≥1 km3 non-DRE) explosive eruptions have so far been recognised from 18 individual SVZ volcanoes, with a predominant eastward dispersal of fallout deposits (Fontijn et al., 2014). The records comprise four ignimbrite-forming eruptions (Licán, Curacautín, Amarillo, and Pucón; Lohmar et al., 2007, 2012; Silva Parejas et al., 2010; Amigo et al., 2013; Marshall et al., 2022; Valdivia et al., 2022) and repeated, moderate-scale eruptions sourced from a few volcanoes (e.g., Calbuco, Chaitén, Hudson). Records of large eruptions are more frequent between ca. 13.0 and 9.5 ka, and since ca. 4.5 ka (Fontijn et al., 2016). Schindlbeck et al. (2014) recognised over 30 <15 ka-old eruptions at Llaima, whilst at PCCVC and Antillanca, Naranjo et al. (2017) identified five voluminous Holocene tephra deposits. In contrast with findings from previous studies, Chaitén repeatedly erupted in the last 10 kyr and produced at least five rhyolitic eruptions with non-DRE tephra volumes between 0.5 and 4.7 km3 (Watt et al., 2013). The total eruption record at Chaitén reaches 20 <18 ka-old eruptions, not all rhyolitic in composition (Alloway et al., 2017). Another twelve, mostly historical eruptions, have been correlated and described in detail at Calbuco (Bertin et al., 2021; Romero et al., 2021).

During the last decade, the study of SVZ volcanoes also proved an extensive compendium of late Pleistocene-Holocene activity. At the Laguna del Maule volcanic complex, for example, at least three Plinian eruptions, three moderate explosive eruptions (i.e., VEI 3-4) and one ignimbrite-forming eruption, all younger than 14 ka, were identified (Fierstein et al., 2013). Further south, the tephrostratigraphic record at Antuco volcano revealed 23 mid-to-late Holocene explosive eruptions, three of them with sub-Plinian characteristics (Romero et al., 2020b). Similarly, 27 <12 ka-old tephra deposits were described by Gilbert et al. (2014) at Lonquimay volcano. Mocho-Choshuenco revealed 34 postglacial (<18 ka) explosive eruptions, including three Plinian and another 40 cone-forming eruptions from peripheral small eruptive centres (Rawson et al., 2015), revealing an unprecedented record of explosive volcanism that dramatically modifies the hazard evaluation. New Holocene eruptions sourced from Michinmahuida were recognised by Amigo et al. (2013), fuelled by new studies in the area as consequence of the 2008 Chaitén eruption. The Chaitén case exemplifies how catastrophic eruptions have motivated studies in other volcanoes otherwise unexplored by volcanologists.

The lacustrine tephra records have great potential to synchronise various paleoenvironmental, paleoclimatological and paleoseismological records in the region (Fontijn et al., 2016). Those records, coupled with subaerial tephrostratigraphic observations, have offered clues on the composition, magnitude, and frequency of explosive eruptions in the SVZ that can be correlated to climate changes and particularly deglaciation (Rawson et al., 2016b). The lacustrine records also reveal that explosive eruptions at 40-41 °S occurred in close synchrony with deglaciation during the last ~14 kyr (Alloway et al. 2022). At the time of writing (2024), the most updated tephrochronological dataset for the SVZ is available in Martínez et al. (2023).

4. Towards a holistic and interdisciplinary strategy for reducing volcanic risk in the SVZ

4.1. The local understanding of SVZ volcanoes and their hazards: an historical perspective

Historiographical studies revealed the early existence of local knowledge about volcanism (Garrido, 2017). The native communities, particularly the Mapuche people, have experienced recurrent volcanic eruptions (Atallah, 2016), understood as expressions of the Mapu (Mother Earth in the Mapuche language) that shape myths, beliefs, and rituals (e.g., Bacigalupo, 1998; Bastías et al., 2021). It is worth noting that the Spanish colonists aimed to extirpate native beliefs, such as the existence of pillanes (spirits) inhabiting volcanoes. Nevertheless, these beliefs have survived to the present day, partly explained by the long-lasting continuity of the Mapuche people and rural communities around several SVZ volcanoes.

The first maps, illustrations, voyage logbooks, chronicles, and descriptions of SVZ volcanoes were made centuries later by Europeans, mainly on the western (Chilean) side of the Andes (Havestadt, 1777; Poeppig, 1835; Darwin, 1840; Barros Arana, 1911; Cristi, 1953; Petit-Breuilh, 2004, 2007; Ottone, 2008; Baeza, 2009; Ramos, 2011; Lara et al., 2012, 2013; Hervé and Charrier, 2016). The academic approach to understand volcanoes started in Argentina in 1865 at the University of  Buenos Aires (e.g., Bodenbender, 1889; Groeber and Corti, 1920 in Agusto and Vélez, 2017; Ramos, 2011; Sruoga, 2016 and references therein), and progressed to systematic investigations in the 1960s (e.g., Llambías, 1964; Polanski, 1972). In Chile, the first volcanological investigations were conducted at the University of Chile (e.g., Brüggen, 1950; Casertano, 1963a, b; Moreno, 1975, 1976, 2004, 2013; González-Ferrán, 1995; Charrier et al., 2022) and systematic research of volcanic hazards was launched at the Chilean Geological and Mining Service (Sernageomin, by its acronym in Spanish) in 1991. All these efforts initially focused on SVZ volcanoes (Alvarado et al., 1999; Amigo, 2021).

In Chile, under the current volcano monitoring and hazard assessment programme (Chilean Volcanic Surveillance Network; RNVV, by its acronym in Spanish), at least 27 hazard maps have been published for SVZ volcanoes since 1999 (Vera et al., 2023), 17 of them since 2003 (Supplementary Table 2). Alongside the RNVV, several research groups, mainly from universities and research centres, work on SVZ volcanoes (Gho et al., 20173). Binational (Chilean-Argentinian) effort has also materialised the production of hazard maps such as at Planchón-Peteroa (Naranjo et al., 1999), Laguna del Maule (Gho et al., 2019), and Lanin volcano (Jara et al., 2020). In Argentina, the hazard map of Copahue volcano (Kaufman et al., 2023) has been recently published.

4.2. Volcano monitoring and inter-institutional collaboration

Latin American volcano monitoring institutions are comparatively younger than those in other regions of the world and, in many cases, were created after volcanic crises or disasters (Forte et al., 2021). This holds true for both Argentina and Chile, where SVZ volcanic eruptions have helped in securing a regular flow of resources for volcano monitoring and hazard programs. In Chile, the Southern Andes Volcano Observatory (OVDAS, by its acronym in Spanish) was founded in 1996 to monitor the most active volcanoes of the SVZ, including Llaima and Villarrica. The creation of the RNVV in 2009, because of the 2008 Chaitén eruption, represented a turning point in volcano monitoring in Chile. Since then, surveillance of SVZ volcanoes improved significantly in quantity and quality, becoming a regional and world reference (Amigo, 2021; Forte et al., 2021). Nowadays, the RNVV monitors 45 volcanoes, 35 of which are in the SVZ.

In Argentina, the first efforts to create a volcano observatory started after the 2011-2012 PCCVC and 2012 Copahue eruptions, being finally materialised in 2017 (García and Badi, 2021). The Argentinian Volcanic Surveillance Observatory (OAVV, by its acronym in Spanish), dependent on the Argentinian Geological and Mining Service (Segemar, by its acronym in Spanish), is the youngest volcano observatory in Latin America. Currently, OAVV monitors the activity of five SVZ volcanoes: Planchón-Peteroa, Laguna del Maule, Copahue, Domuyo, and Lanin.

The recent eruptions in the SVZ are good examples of how systematic volcano monitoring and research influence the different stages of an emergency. For example, the poorly understood eruptive history of Chaitén before 2008 and the lack of monitoring instrumentation led to an unexpected eruption onset. This eruption and its consequences dramatically modified risk perception for this volcano (Major and Lara, 2013). Contrastingly, in the PCCVC, the detailed geological mapping and the deployment of a robust monitoring network allowed successful forecast of the onset of the 2011-2012 eruption cycle and the evacuation in Chile of nearly 8,000 people (Elissondo et al., 2016). In Argentina, however, the lack of an official monitoring institution coupled with an inefficient binational communication scheme took locals by surprise during the 2011-2012 PCCVC eruption (Bran et al., 2023). Another example is the 2015 Villarrica eruption, whose alert level was raised from green to orange before erupting on March 3rd. The number of evacuees totalled ~2,000 (Romero et al., 2018). In terms of volcano monitoring, the recent implementation of infrasound instruments around Villarrica has shown significant advances in detecting and characterising lahars and determining the height of the lava lake surface inside the volcano’s crater (e.g., Johnson and Palma, 2015; Johnson et al., 2018), while automated discrimination of surface activity has improved with machine learning algorithms (e.g., Witsil and Johnson, 2020). These techniques should allow an overall successful performance of technical alert levels at volcanoes like Villarrica. Volcano monitoring, however, assists but does not guarantee accurate eruption forecasts; as an example, Calbuco volcano recorded only limited and short-lived precursory unrest before the 22 April 2015 eruption. Unlike Chaitén, geologic and hazard maps were available for Calbuco long before 2015, favouring decision-making and the evacuation of ~6,500 people during the crisis. These examples and counterexamples highlight the importance of knowing the eruptive behaviour of volcanoes at the scale of decades to thousands of years. This is also critical for a correct understanding of their potential hazards.

4.3. Society-volcano coexistence

There is a long history of human-volcano interactions expressed in two main dimensions: 1) the ways and motivations by which society has inhabited and used volcanic spaces, and 2) the forms and strategies that society adopt for disaster risk reduction in such spaces. Regarding the first, the literature reviewed demonstrates the value of volcanic livelihoods in the SVZ (Marín et al., 2020). For instance, the ice-clad volcanoes serve as important freshwater resources (e.g., Rivera et al., 2006, Rivera and Brown, 2013), while food availability and a benign climate have favoured human inhabitation around SVZ volcanoes since postglacial times (e.g., Montané, 1968; Moreno and Varela, 1985; Dillehay and Collins, 1988; Mancini et al., 2013; Pino et al., 2013; Forte et al., 2022). This aspect of long-standing occupation is related to the second dimension, in that post-colonial communities continued using similar locations for rural and urban development to those occupied during the pre-colonisation times (e.g., Petit-Breuilh, 2004; Aguayo et al., 2009; Salazar and Jalabert, 2015; Harambour, 2019; Grau and Foguet, 2021), increasing human exposure in volcanic areas.

There are social processes related to diverse understandings of inhabiting volcanic territories, such as the existing local knowledge systems about volcanic activity (Ramos and Tironi, 2022) and disaster memory on past eruptions (Petit-Breuilh, 2004, 2023; Vergara-Pinto and Marín, 2023; Walshe et al., 2023), which are highly valued for people to make sense of volcanic risk. Along with this, the society-volcano coexistence includes uncertainties regarding unpredictable eruptive scenarios for populations and scientists (Vergara-Pinto and Romero, 2023). These scenarios imply reconsidering pre-existing vulnerabilities and adaptive capacity to foster the equitable resilience of populations (Matin et al., 2018). From there, we recognise interdisciplinarity as an outcome of the legacy of eruptions (Fig. 6) that has opened volcanology to the social sciences and stakeholders in recent decades. Two aspects are therefore discussed in the next section, regarding some interdisciplinary collaborations, deemed relevant in our study, that can improve our understanding and valorisation of the SVZ volcanic systems and their impacts.


FIG. 6. Representation of the holistic understanding of volcanic risk. Illustrations from Canva.


5. Opportunities for collaboration

5.1. On active magmatic-hydrothermal systems

Heat flow along the active Andean volcanic arc is responsible for the high geothermal potential in Chile, representing ~3.4% of the territory (e.g., Aravena and Lahsen, 2013; Aguilera et al., 2014; Daniele et al., 2020; Lemus and Honores, 20214), with inferred resources reaching 660 MWe (total estimated power potential equivalent to ~4.4% of the installed electric capacity; Aravena et al., 2016). At least 150 geothermal zones exist in the SVZ around Holocene volcanoes. These zones, characterized by meteoric and magmatic fluid contribution, are hosted within subvolcanic volcano-sedimentary sequences and crystalline basement, and favoured by tectonic features such as the LOFS or the ATFs (Sánchez-Alfaro et al., 2015; Wrage et al., 2017; Daniele et al., 2020; Pérez-Estay et al., 2023). The most promising geothermal sites are located at Tinguiririca, Calabozos, Laguna del Maule, Nevados de Chillán, Domuyo, Copahue, Tolhuaca, Sierra Nevada, and the PCCVC (Lahsen et al., 2005, 2010, 2015; Chiodini et al., 2014; Barcelona et al., 2021). Current research at the volcanoes related to these geothermal sites has provided new knowledge about their magmatic-hydrothermal systems, volcanic evolution, eruptive history, volcano-tectonic interplay, and potential hazards. Strong interdisciplinary collaboration is therefore expected between geothermal researchers and volcanologists to advance towards renewable energies and volcanic hazard evaluation.

Volcanoes in subduction zones typically form shallow (<4-5 km deep) ore deposits within trans-crustal magmatic systems (Hedenquist and Lowenstern, 1994), particularly porphyry-type deposits that provide 75% of the world’s copper, but also gold and molybdenum (Sillitoe, 2010). In this regard, the SVZ, despite its apparent lack of ore deposits, has proven an ideal natural laboratory to explore the systematics of ore metals and volatile components in a subduction-related active volcanic arc using both melt inclusion and whole-rock geochemical approaches (e.g., Zajacz and Halter, 2009; Cox et al., 2019; 2020; Grondahl and Zajacz, 2022). This potential also extends to volcanoes with recent eruptions, active degassing, or active hydrothermal systems (Zajacz and Halter, 2009; Grondahl and Zajacz, 2022). Grondahl and Zajacz (2022) noticed that magmas from the thicker-crust NSVZ volcanoes have higher potential to develop ore deposits compared to magmas from the thinner-crust SSVZ due to higher volatile (S and Cl) contents needed to extract, accumulate, and precipitate metals in the upper crust. In addition, the tectono-magmatic conditions of the southern SVZ promote degassing-induced loss of crucial metal-carrying volatile elements during differentiation, precluding efficient metal extraction. However, high magma ascent rates and elevated eruptive fluxes at Villarica and Llaima volcanoes might avoid Cu-depleting fractionation processes in the lower crust and deliver high-Cu magmas to the upper crust, representing potential sites of unexposed actively forming porphyry-type deposits (Cox et al., 2020). Likewise, chalcophile metals have revealed compositional trends consistent with ore metal fractionation at an early stage beneath Antuco volcano during lower crustal magmatic evolution (Cox et al., 2019). Future directions could also include studies to determine the distribution and speciation of ore metals and volatiles between the different phases present in a magma (Lanzirotti et al., 2019; Grondahl and Zajacz, 2022) and geophysical approaches to identify potentially metal-rich magmatic brine layers below active volcanoes (Blundy et al., 2021; Hudson et al., 2023). Such observations are relevant to understand active interactions between hydrothermal and magmatic activity, volcanic eruptions, and to interpret volcanic unrest processes. 

5.2. Geoconservation and geoheritage

There is a variety of protected zones in Chile and Argentina that include volcanic areas (e.g., Pellet et al., 2005; Sruoga, 2008; Basic and Arriagada, 2012; Rivera and Vallejos-Romero, 2015; Hora, 2018; Casadevall et al., 2019; Coronato and Schwarz, 2022). In Chile, volcanoes are central elements of geoheritage initiatives, represented by the Kütralkura UNESCO geopark and many projects such as Cajón del Maipo and Pillanmapu (e.g., Benado et al., 2019; Daskam, 2022; Schilling et al., 2023; Orellana et al., 2023). Kütralkura contains six active volcanoes: Tolhuaca, Lonquimay, Llaima, Sollipulli, Quetrupillán, and Lanín (Schilling et al., 2023), two of which have erupted in the last 35 years. The Pillanmapu project considers two main volcanic areas: Descabezados and Laguna del Maule (Orellana et al., 2023). At Cajón del Maipo, three active volcanoes are considered, alongside ignimbrites, calderas, and fumarole fields (Daskam, 2022). Unprotected volcanic areas may also use their geodiversity for touristic and didactic purposes. For instance, at Nevados de Chillán, sixteen new geosites have been recognised which could provide a valuable appreciation of the landscape and its evolution for geotourism and geoeducational purposes (Vidal and Tassara, 2023). In Argentina, several volcanic landscapes within the SVZ, which include volcanoes such as Copahue, Domuyo and Lanín, as well as the Payún Matrú volcanic field, are encompassed by provincial or national protected areas.

5.3. Further considerations

To date, the local scientific efforts in the SVZ are primarily descriptive and focused on the mechanisms, dynamics, and impacts of volcanic eruptions. Considering the limited experimental laboratories and instrumental capabilities available in Chile or Argentina to obtain high-resolution analytical data, most of the research is carried out abroad (primarily in Europe and United States) and is subject primarily to funding or collaboration. These conditions prevent the rapid acquisition of data for hazard assessment or volcano monitoring during an unrest or crisis scenario. Improving the local instrumentation is central to reducing such limitations.

International collaboration has been crucial in expanding the local monitoring capacities in the region (e.g., Amigo, 2021; García and Badi, 2021; Lara et al., 2021). Current monitoring infrastructure requires a further step of prioritisation and instrumentation efforts, frequently focused on the most critical volcanoes (Amigo, 2021; García and Badi, 2021). In that case, dense, multiparametric monitoring networks are critical for improving knowledge about volcanic systems (e.g., Hilley et al., 2022). Remote sensing techniques may provide more extensive spatial coverage and quasi-instantaneous data acquisition at poorly accessible volcanoes. An obstacle for these tasks to be successfully applied is limited budgeting (or a decreasing investment in monitoring after some years of increase consequence of a catastrophic event). In those cases, institutional efforts can be focused on monitoring automation and simultaneous treatment of multiparametric data (e.g., Cecioni and Pineda, 2009).

A scientifically rigorous understanding of volcanic systems needs analogous and/or numerical models to support or explain natural observations (Mader et al., 2004; Fagents et al., 2013). Future efforts should include expanding the use of numerical models in the SVZ (e.g., Gutiérrez and Parada, 2010; Amigo, 2013; Córdoba et al., 2015; Castruccio and Contreras, 2016; Reckziegel et al., 2016, 2019; Castruccio et al., 2017; Bertin, 2017 and Bertin et al., 2019; Ruz et al., 2020), machine learning (e.g., Witsil and Johnson, 2020; Boschetty et al., 2022; Ardid et al., 2023), and other AI algorithms, using multimethod quantification of multiphase processes and upscaling experiments to near-natural scales (Poppe et al., 2022). All these techniques require a fundamental field-based knowledge on the geological evolution, deposits, eruptive behaviour, and hazards of active volcanoes for accurate representations of physical phenomena.

The technical knowledge of volcanic systems should be complemented with strategies of geoconservation, geoheritage, geoeducation, and scientific divulgation (e.g., Schilling et al., 2023), as they enhance the sustainable development of the local economies (Sepúlveda, 2002). There is still a need for a legal framework for geoconservation and geoheritage in Chile and Argentina, but also for specialised organisations capable of evaluating, promoting, and protecting such elements. In this sense, protecting volcanic territories should result from collective efforts between volcanologists, local communities, social scientists, and cultural and educational institutions, among other relevant actors.

6. Closing remarks

During the last 35 years, volcanic eruptions in the Andean SVZ have stimulated scientific productivity, providing a natural laboratory to understand eruption mechanisms, dynamics, and impacts, particularly eruption-controlling processes, ecological and landscape response to volcanic phenomena, short- and long-term socio-economic impacts of volcanic eruptions, as well as new insights into the long-term behaviour of volcanoes. These eruptions and their impacts have triggered significant investment, technologization, and professionalisation for volcano monitoring, volcanic hazard assessment, and eruption forecast. 

Despite recurrent and impactful eruptions in the SVZ, the extended presence of humans in the region implies recognising the interplay between natural and social elements in volcanic territories, as they open new avenues for a more holistic understanding of volcanic risk. We identify great opportunities with other closely related disciplines to complement the geological and hazard understanding of volcanoes and build more sustainable and safe spaces in the territory.

This contribution was visualized during an invited talk for the Commission on Explosive Volcanism of the International Association of Volcanology and Chemistry of the Earth’s interior (IAVCEI). We are grateful of the reviews provided by K. Fontijn, M. Mella, and P. Sruoga, plus the editorial handling and insightful comments of D. Bertin. This contribution seeks to recognise all the brilliant volcanologists that built the existing framework on the SVZ and inspired newer generations to study these volcanoes. They are all properly cited along the text. All supplementary materials are available at:

1 NOAA National Centers for Environmental Information. 2022: ETOPO 2022 15 Arc-Second Global Relief Model. NOAA National Centers for Environmental Information. https://doi: 10.25921/fd45-gt74. Accessed on 10/05/2023.

2 Vera, F.; Palma, J.L. 2017. Avalanchas mixtas y depósitos proximales generados en la erupción de 2015 del Volcán Villarrica y su interacción con la cubierta glacial. VIII Encuentro Nacional de Estudiantes de Geología 28.

3 Gho, R.; Forte, P.; Romero, J.; Perales, C.; Jácome, M.P.; González, G.; Bustos, E.; Vasconez; Lazarte, I.; Rodríguez, D. 2017. La volcanología chilena en el contexto latinoamericano: estado actual y perspectivas para las nuevas generaciones. VIII Encuentro Nacional de Estudiantes de Geología 49.

4 Lemus, M.; Honores, C. 2021. Sistemas geotermales de la Zona Volcánica Sur Central de los Andes de Chile (38-41° S): modelos conceptuales con base en geología y geofísica ZTEM. Servicio Nacional de Geología y Minería, Informe Registrado IR-21-92 (Inédito): 123 p.


Aguayo, M.; Pauchard, A.; Azócar, G.; Parra, O. 2009. Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: Entendiendo la dinámica espacial y temporal del paisaje. Revista Chilena de Historia Natural 82 (3): 361-374.

Aguilera, F.; Honores, C.; Lemus, M.; Neira, H.; Pérez, Y.; Rojas, J. 2014. Evaluación de los Recursos Geotérmicos de la Región de Los Lagos. Servicio Nacional de Geología y Minería, Informe Registrado IR-14-57 (Inédito): 268 p. Santiago.

Aguilera, F.; Benavente, Ó.; Gutiérrez, F.; Romero, J.; Saltori, O.; González, R.; Agusto, M.; Caselli, A.; Pizarro, M. 2016. Eruptive activity of planchón-Peteroa volcano for period 2010-2011, southern andean volcanic zone, Chile. Andean Geology 43 (1): 20-46. doi:

Agusto, M.; Vélez, M.L. 2017. Avances en el conocimiento del sistema volcánico-hidrotermal del Copahue: a 100 años del trabajo pionero de Don Pablo Groeber. Revista de la Asociación Geológica Argentina 74 (1): 109-124.

Agusto, M.; Forte, P.; Aguilera, F.; Ceballos, M.A.A. 2022. Volcanism in Latin America: Advances in the region from the First ALVO Congress. Journal of South American Earth Sciences 118: 103936.

Aiuppa, A.; Bitetto, M.; Francofonte, V.; Velásquez, G.; Bucarey, C.; Giudice, G.; Liuzzo, M.; Moretti, R.; Moussallam, Y.; Peters, N.; Tamburello, G.; Valderrama, O.A.; Curtis, A. 2017. A CO2‐gas precursor to the March 2015 Villarrica volcano eruption. Geochemistry, Geophysics, Geosystems 18 (6): 2120-2132.

Alegría, C.; Vergara-Pinto, F. 2024. Living in-between: Implications of local risk perceptions for the management of future eruptions at the Calbuco and Osorno volcanoes (Ensenada, Chile). Andean Geology 51 (1): 63-85. doi:

Alfano, F.; Bonadonna, C.; Volentik, A.C.; Connor, C.B.; Watt, S.F.; Pyle, D.M.; Connor, L.J. 2011. Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption, Chile. Bulletin of Volcanology 73 (5): 613-630.

Alfano, F.; Bonadonna, C.; Gurioli, L. 2012. Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bulletin of Volcanology 74 (9): 2095-2108.

Alloway, B.V.; Pearce, N.J.G.; Villarosa, G.; Outes, V.; Moreno, P.I. 2015. Multiple melt bodies fed the AD 2011 eruption of Puyehue-Cordón Caulle, Chile. Scientific reports 5 (1): 17589.

Alloway, B.V.; Pearce, N.J.; Moreno, P.I.; Villarosa, G.; Jara, I.; De Pol-Holz, R.; Outes, V. 2017. An 18,000 year-long eruptive record from Volcán Chaitén, northwestern Patagonia: Paleoenvironmental and hazard-assessment implications. Quaternary Science Reviews 168: 151-181.

Alloway, B.V.; Pearce, N.J.; Moreno, P.I.; Villarosa, G.; Jara, I.A.; Henríquez, C.A.; Sagredo, E.A.; Ryan, M.T.; Outes, V. 2022. Refinement of the tephrostratigraphy straddling the northern Patagonian Andes (40-41° S): new tephra markers, reconciling different archives and ascertaining the timing of piedmont deglaciation. Journal of Quaternary Science 37 (3): 441-477.

Alvarado, G.; Acevedo, A.P.; Monsalve, M.L.; Espíndola, J.M.; Gómez, D.; Hall, M.; Naranjo, J.A.; Pulgarín, B.; Raigosa, J:, Sigarán, C.; Van der Laat, R. 1999. El desarrollo de la vulcanología en latinoamérica en el último cuarto del siglo XX. Revista Geofísica 51: 185-241.

Amigo, Á. 2013. Estimation of tephra-fall and lahar hazards at Hudson Volcano, southern Chile: Insights from numerical models. Geological Society of America Special Papers 498: 177-199.

Amigo, Á. 2021. Volcano monitoring and hazard assessments in Chile. Volcanica 4 (S1): 1-20.

Amigo, Á.; Lara, L.E.; Smith, V.C. 2013. Holocene record of large explosive eruptions from Chaitén and Michinmahuida Volcanoes, Chile. Andean Geology 40 (2): 227-248. doi:

Andersen, N.L.; Singer, B.S.; Jicha, B.R.; Beard, B.L.; Johnson, C.M.; Licciardi, J.M. 2017. Pleistocene to Holocene growth of a large upper crustal rhyolitic magma reservoir beneath the active Laguna del Maule volcanic field, central Chile. Journal of Petrology 58 (1): 85-114. doi:

Anderson, M.; Alvarado, P.; Zandt, G.; Beck, S. 2007. Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophysical Journal International 171 (1): 419-434.

Angermann, D.; Klotz, J.; Reigber, C. 1999. Space-geodetic estimation of the Nazca-South America Euler vector. Earth and Planetary Science Letters 171 (3): 329-334.

Arancibia, G.; Cembrano, J.; Lavenu, A. 1999. Transpresión dextral y partición de la deformación en la Zona de Falla Liquiñe-Ofqui, Aisén, Chile (44-45ºS). Revista Geológica de Chile 26 (1): 3-22.

Aravena, D.; Lahsen, A. 2013. A geothermal favorability map of Chile, preliminary results. Geothermal Resources Council Transactions 37.

Aravena, D.; Muñoz, M.; Morata, D.; Lahsen, A.; Parada, M.Á.; Dobson, P. 2016. Assessment of high enthalpy geothermal resources and promising areas of Chile. Geothermics 59: 1-13.

Araya, O. 2015. Erupciones volcánicas. Efectos sobre la ganadería. Ediciones Universidad Austral de Chile: 137 p.

Ardid, A.; Dempsey, D.; Caudron, C.; Cronin, S.J.; Miller, C.A.; Melchor, I.; Syahbana, M.D.; Kennedy, B. 2023. Using template matching to detect hidden fluid release episodes Beneath Crater Lakes in Ruapehu, Copahue, and Kawah Ijen Volcanoes. Journal of Geophysical Research, Solid Earth 128 (10). doi:

Arzilli, F.; Morgavi, D.; Petrelli, M.; Polacci, M.; Burton, M.; Di Genova, D.; Spina, L.; La Spina, G.; Hartley, M.; Romero, J.E.; Fellowes, J.; Díaz-Alvarado, J.; Perugini, D. 2019. The unexpected explosive sub-Plinian eruption of Calbuco volcano (22-23 April 2015; southern Chile): Triggering mechanism implications. Journal of Volcanology and Geothermal Research 378: 35-50.

Astort, A.; Boixart, G.; Folguera, A.; Battaglia, M. 2022. Volcanic unrest at Nevados de Chillán (Southern Andean Volcanic Zone) from January 2019 to November 2020, imaged by DInSAR. Journal of Volcanology and Geothermal Research 427: 107568.

Atallah, D.G. 2016. Toward a decolonial turn in resilience thinking in disasters: Example of the Mapuche from southern Chile on the frontlines and faultlines. International Journal of Disaster Risk Reduction 19: 92-100.

Bacigalupo, A.M. 1998 The exorcising sounds of warfare: The Performance of shamanic healing and the struggle to remain Mapuche. Anthropology of Consciousness 9 (2‐3): 1-16.

Baeza, R.S. 2009. Geografía y nación. Claudio Gay y la primera representación cartográfica de Chile. Estudios Geográficos 70 (266): 231-267.

Barcelona, H.; Senger, M.; Yagupsky, D. 2021. Resource assessment of the Copahue geothermal field. Geothermics 90: 101987. doi: https://doi: 10.1016/j.geothermics.2020.101987

Barros Arana, D. 1911. Don Claudio Gay, su vida i sus obras: Estudio biográfico i crítico (Santiago: Imprenta Nacional, 1876): 216-217.

Basic, Z.; Arriagada, R. 2012. Conservación de la biodiversidad y áreas protegidas en Chile. Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal, Revista Agronomía y Forestal 46: 18-23.

Bastías, C.A.; Charrier, R.; Millacura, C.V.; Aguirre, L.; Hervé, F.; Farías, M.A. 2021. Influence of Geological Processes in the Cosmovision of the Mapuche Native People in South Central Chile. Earth Sciences History 40 (2): 581-606.

Bechon, T.; Billon, M.; Namur, O.; Bolle, O.; Fugmann, P.; Foucart, H.; Delmelle, N.; Vander Auwera, J. 2022. Petrology of the magmatic system beneath Osorno volcano (Central Southern Volcanic Zone, Chile). Lithos 426: 106777. doi: https://doi: 10.1016/j.lithos.2022.106777

Benado, J.; Hervé, F.; Schilling, M.; Brilha, J. 2019. Geconservation in Chile: State of the art and analysis. Geoheritage 11:793-807

Benet, D.; Costa, F.; Pedreros, G.; Cardona, C. 2021. The volcanic ash record of shallow magma intrusion and dome emplacement at Nevados de Chillán Volcanic complex, Chile. Journal of Volcanology and Geothermal Research 417: 107308.

Bertin, D. 2017. 3‐D ballistic transport of ellipsoidal volcanic projectiles considering horizontal wind field and variable shape‐dependent drag coefficients. Journal of Geophysical Research: Solid Earth 122 (2): 1126-1151.

Bertin, D.; Lara, L.E.; Basualto, D.; Amigo, Á.; Cardona, C.; Franco, L.; Gil, F.; Lazo, J. 2015a. High effusion rates of the Cordón Caulle 2011-2012 eruption (Southern Andes) and their relation with the quasi‐harmonic tremor. Geophysical Research Letters 42 (17): 7054-7063.

Bertin, D.; Amigo, Á.; Bertin, L. 2015b. Erupción del volcán Villarrica 2015: Productos emitidos y volumen involucrado. In Congreso Geológico Chileno, No. 14, Proceedings: 4-8. La Serena.

Bertin, D.; Lindsay, J.M.; Becerril, L.; Cronin, S.J.; Bertin, L.J. 2019. MatHaz: a Matlab code to assist with probabilistic spatio-temporal volcanic hazard assessment in distributed volcanic fields. Journal of Applied Volcanology 8: 1-25.

Bertin, L.J.; Christie, D.A.; Sheppard, P.R.; Muñoz, A.A.; Lara, A.; Álvarez, C. 2021. Chemical signals in tree rings from northern Patagonia as indicators of Calbuco volcano eruptions since the 16th century. Forests 12 (10): 1305.

Blundy, J.; Afanasyev, A.; Tattitch, B.; Sparks, S.; Melnik, O.; Utkin, I.; Rust, A. 2021. The economic potential of metalliferous sub-volcanic brines. Royal Society Open Science 8 (6): 202192.

Bodenbender, G. 1889. Expedición al Neuquén. Boletín Instituto Geográfico Argentino 10: 311-329. Buenos Aires.

Bonadonna, C.; Costa, A. 2012. Estimating the volume of tephra deposits: a new simple strategy. Geology 40 (5): 415-418.

Bonadonna, C.; Pistolesi, M.; Cioni, R.; Degruyter, W.; Elissondo, M.; Baumann, V. 2015. Dynamics of wind‐affected volcanic plumes: The example of the 2011 Cordón Caulle eruption, Chile. Journal of Geophysical Research: Solid Earth 120 (4): 2242-2261.

Bonali, F.L.; Tibaldi, A.; Corazzato, C.; Tormey, D.R.; Lara, L.E. 2013. Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma pathway: the Chile case. Tectonophysics 583: 54-67.

Bonali, F.L.; Tibaldi, A.; Corazzato, C. 2015. Sensitivity analysis of earthquake-induced static stress changes on volcanoes: the 2010 Mw 8.8 Chile earthquake. Geophysical Journal International 201 (3): 1868-1890.

Boschetty, F.O.; Ferguson, D.J.; Cortés, J.A.; Morgado, E.; Ebmeier, S.K.; Morgan, D.J.; Romero, J.E.; Silva Parejas, C. 2022. Insights into magma storage beneath a frequently erupting arc volcano (Villarrica, Chile) from unsupervised machine learning analysis of mineral compositions. Geochemistry, Geophysics, Geosystems 23 (4): e2022GC010333.

Bouvet de Maisonneuve, C.B.; Dungan, M.A.; Bachmann, O.; Burgisser, A. 2012. Insights into shallow magma storage and crystallization at Volcán Llaima (Andean southern volcanic zone, Chile). Journal of Volcanology and Geothermal Research 211: 76-91.

Bran, D.; Domínguez, L.; Forte, P.; Velasco, V.; Fantozzi, A.; Gaitán, J. 2023. Capítulo 5. Ceniza volcánica en la región sur de Río Negro: estudios, resultados y lecciones aprendidas de la erupción 2011-2012 del volcán Cordón Caulle. In Diez años de la erupción del Puyehue-Cordón Caulle (Muriello, S.; Barrios, G.A.; editores). Editorial Universidad Nacional de Río Negro: 232 p. Viedma.

Breard, E.C.P.; Calder, E.S.; Ruth, D.C. 2020. The interaction between concentrated pyroclastic density currents and snow: a case study from the 2008 mixed-avalanche from Volcán Llaima (Chile). Bulletin of Volcanology 82: 1-14.

Brüggen, J. 1950. El volcanismo en Chile. In Anales de la Facultad de Ciencias Físicas y Matemáticas 7 (7): 61-68.

Bucchi, F.; Lara, L.E.; Gutiérrez, F. 2015. The Carrán-Los Venados volcanic field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting. Journal of Volcanology and Geothermal Research 308: 70-81.

Cahill, T.; Isacks B.L. 1992. Seismicity and shape of the subducted Nazca plate. Journal of Geophysical Research 97: 17503-17529. doi:

Cardona, C.; Gil-Cruz, F.; Franco-Marín, L.; San Martín, J.; Valderrama, O.; Lazo, J.; Cartes, C.; Morales, S.; Hernández, E.; Quijada, J.; Pinto, C.; Vidal, M.; Bravo, C.; Pedreros, G.; Contreras, M.; Figueroa, M.; Córdova, L.; Mardones, C.; Alarcón, A.; Velázquez, G.; Bucarey, C. 2021. Volcanic activity accompanying the emplacement of dacitic lava domes and effusion of lava flows at Nevados de Chillán Volcanic Complex-Chilean Andes (2012 to 2020). Journal of Volcanology and Geothermal Research 420. doi:

Casadevall, T.J.; Tormey, D.; Van Sistine, D. 2019. Protecting our global volcanic estate: review of international conservation efforts. International Journal of Geoheritage and Parks 7 (4): 182-191.

Caselli, A.; Augusto, M.; Velez, M.L.; Forte, P.; Bengoa, C.; Daga, R.; Albite, J.M.; Capaccioni, B. 2016. The 2012 eruption. In Copahue volcano: 61-77. Springer, Berlin. Heidelberg. doi:

Casertano de Lorenzo, L. 1963a. Catalogue of the active volcanoes of the world including solfatara fields. Part 15. Edited by the International Volcanological Association: 55 p. Rome.

Casertano de Lorenzo, L. 1963b. General characteristics of active Andean volcanoes and a summary of their activities during recent centuries. Seismological Society of America, Boletín 53 (6): 1415-1433.

Castro, J.; Dingwell, D. 2009. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature 461: 780-783

Castro, J.M.; Schipper, C.I.; Mueller, S.P.; Militzer, A.S.; Amigo, A.; Parejas, C.S.; Jacob, D. 2013. Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bulletin of Volcanology 75: 1-17.

Castruccio, A.; Contreras, M.A. 2016. The influence of effusion rate and rheology on lava flow dynamics and morphology: A case study from the 1971 and 1988-1990 eruptions at Villarrica and Lonquimay volcanoes, Southern Andes of Chile. Journal of Volcanology and Geothermal Research 327: 469-483.

Castruccio, A.; Clavero, J.; Segura, A.; Samaniego, P.; Roche, O.; Le Pennec, J.L.; Droguett, B. 2016. Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Calbuco volcano (southern Chile). Bulletin of Volcanology 78: 1-19.

Castruccio, A.; Diez, M.; Gho, R. 2017. The influence of plumbing system structure on volcano dimensions and topography. Journal of Geophysical Research, Solid Earth 122 (11): 8839-8859.

Cecioni, A.; Pineda, V. 2009. Geology and geomorphology of natural hazards and human-induced disasters in Chile. Developments in Earth Surface Processes 13: 379-413.

Cembrano, J.; Hervé, F.; Lavenu, A. 1996. The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259 (1-3): 55-66.

Cembrano, J.; Lara, L. 2009. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471 (1-2): 96-113.

Cembrano, J.; Schermer, E.; Lavenu, A.; Sanhueza, A. 2000. Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe-Ofqui fault zone, southern Chilean Andes. Tectonophysics 319 (2): 129-149.

Charrier, R.; Hervé, F.; Silva Parejas, C.A.; Moreno Roa, H. 2022. Profesor Ricardo Thiele Cartagena (1936-2019) un homenaje a su legado. Andean Geology 49 (1): 143-145. doi:

Chiodini, G.; Liccioli, C.; Vaselli, O.; Calabrese, S.; Tassi, F.; Caliro, S.; Caselli, A.; Augusto, M.; D’alessandro, W. 2014. The Domuyo volcanic system: an enormous geothermal resource in Argentine Patagonia. Journal of Volcanology and Geothermal Research 274: 71-77.

Clavero, J.; Moreno, H. 1994. Ignimbritas Licán y Pucón: Evidencias de erupciones explosivas andesítico-basálticas postglaciales del Volcán Villarrica, Andes del Sur, 39 25’S. In Congreso Geológico Chileno 7: 250-254. Concepción.

Coppola, D.; Laiolo, M.; Lara, L.E.; Cigolini, C.; Orozco, G. 2016. The 2008 “silent” eruption of Nevados de Chillán (Chile) detected from space: Effusive rates and trends from the MIROVA system. Journal of Volcanology and Geothermal Research 327: 322-329.

Córdoba, G.; Villarosa, G.; Sheridan, M.F.; Viramonte, J.G.; Beigt, D.; Salmuni, G. 2015. Secondary lahar hazard assessment for Villa la Angostura, Argentina, using Two-Phase-Titan modelling code during 2011 Cordón Caulle eruption. Natural Hazards and Earth System Sciences 15 (4): 757-766.

Coronato, A.; Schwarz, S. 2022. Approaching geodiversity and geoconservation in Argentina. International Journal of Geoheritage and Parks 10 (4): 597-615.

Cox, D.; Watt, S.F.L.; Jenner, F.E.; Hastie, A.R.; Hammond, S.J. 2019. Chalcophile element processing beneath a continental arc stratovolcano. Earth Planetary Science Letters 522: 1-11.

Cox, D.; Watt, S.F.L.; Jenner, F.E.; Hastie, A.R.; Hammond, S.J.; Kunz, B.E. 2020. Elevated magma fluxes deliver high-Cu magmas to the upper crust. Geology 48. doi:

Cristi, J.M. 1953. La Obra Geológica de Domeyko. In Anales de la Universidad de Chile 90-92.

Crosweller, H. S.; Arora, B.; Brown, S. K.; Cottrell, E.; Deligne, N. I.; Guerrero, N. O.; Hobbs, L.; Kiyosugi, K.; Loughlin, S.C.; Lowndes, J.; Nayembil, M.; Siebert, L.; Sparks, R.S.J.; Takarada, S.; Venzke, E. 2012. Global database on large magnitude explosive volcanic eruptions (LaMEVE). Journal of Applied Volcanology 1: 1-13. doi: https://doi: 10.1186/2191-5040-1-4.

Crozier, J.; Tramontano, S.; Forte, P.; Oliva, S.J.C.; Gonnermann, H.M.; Lev, E.; Manga, M.; Myers, M.; Rader, E.; Ruprecht, P.; Tuffen, H. 2022. Outgassing through magmatic fractures enables effusive eruption of silicic magma. Journal of Volcanology and Geothermal Research 430:107617.

Daga, R.; Caselli, A.; Ribeiro Guevara, S.; Agusto, M. 2017. Tefras emitidas durante la fase inicial hidromagmática (julio de 2012) del ciclo eruptivo 2012-actual (2016) del volcán Copahue (Andes del Sur). Asociación Geológica Argentina; Revista de la Asociación Geológica Argentina 74 (2): 191-206.

Daniele, L.; Taucare, M.; Viguier, B.; Arancibia, G.; Aravena, D.; Roquer, T.; Sepúlveda, J.; Molina, E.; Delgado, A.; Muñoz, M.; Morata, D. 2020. Exploring the shallow geothermal resources in the Chilean Southern Volcanic Zone: Insight from the Liquiñe thermal springs. Journal of Geochemical Exploration, 218. doi:

Darwin, C. 1840. XLII.—On the Connexion of certain Volcanic Phenomena in South America; and on the Formation of Mountain Chains and Volcanos, as the Effect of the same Power by which Continents are elevated. Transactions of the Geological Society of London 5 (3): 601-631.

Daskam, C.V. 2022. Contributions to geoconservation in Cajón del Maipo Aspiring Geopark (Chile). Dissertação de Mestrado (Unpublished). Universidade do Minho Escola de Ciências: 97 p.

Davidson, J.P.; Dungan, M.A.; Ferguson, K.M.; Colucci, M.T. 1987. Crust-magma interactions and the evolution of arc magmas: The San Pedro-Pellado volcanic complex, southern Chilean Andes. Geology 15 (5): 443-446.

Davidson, J.P.; Ferguson, K.M.; Colucci, M.T.; Dungan, M.A. 1988. The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S. Chile: multicomponent sources and open system evolution. Contributions to Mineralogy and Petrology 100: 429-445.

Delgado, F.; Contreras-Arratia, R.; Samsonov, S. 2022. Magma buoyancy drives rhyolitic eruptions: A tale from the VEI 5 2008-2009 Chaitén eruption (Chile) from seismological and geodetic data. Earth and Planetary Science Letters 590: 117564.

Delgado, F.; Pritchard, M.; Lohman, R.; Naranjo, J.A. 2014. The 2011 Hudson volcano eruption (Southern Andes, Chile): Pre-eruptive inflation and hotspots observed with InSAR and thermal imagery. Bulletin of Volcanology 76: 1-19.

DeMets, C.; Gordon, R.G.; Argus, D.F. 2010. Geologically current plate motions. Geophysical Journal International, 181 (1): 1-80.

Dillehay, T.D.; Collins, M.B. 1988. Early cultural evidence from Monte Verde in Chile. Nature 332 (6160): 150-152.

Domínguez, L.; Bonadonna, C.; Forte, P.; Jarvis, P.A.; Cioni, R.; Mingari, L.; Bran, D.; Panebianco, J.E. 2020. Aeolian remobilisation of the 2011-Cordón Caulle Tephra-Fallout Deposit: example of an important process in the life cycle of Volcanic Ash. Frontiers in Earth Science 7: 343.

Dungan, M.A.; Wulff, A.; Thompson, R.E.N. 2001. Eruptive stratigraphy of the Tatara-San Pedro complex, 36 S, Southern Volcanic Zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. Journal of Petrology 42 (3): 555-626.

Eisermann, J.O.; Göllner, P.L.; Riller, U. 2021. Orogen-scale transpression accounts for GPS velocities and kinematic partitioning in the Southern Andes. Communications Earth and Environment 2: 167. doi:

Elissondo, M.; Baumann, V.; Bonadonna, C.; Pistolesi, M.; Cioni, R.; Bertagnini, A.; Biass, S.; Herrero, J-C.; González, R. 2016. Chronology and impact of the 2011 Cordón Caulle eruption, Chile. Natural Hazards and Earth System Sciences 16: 675-704. doi: https://doi: 10.5194/nhess-16-675-2016

Espinoza, A. 2015. Chaitén: Aprendizajes de una experiencia de desastre socionatural en la Patagonia chilena. Magallania (Punta Arenas) 43 (3): 5-6.

Espurt, N.; Funiciello, F.; Martinod, J.; Guillaume, B.; Regard, V.; Faccenna, C.; Brusset, S. 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics 27 (3). doi:

Fagents, S.A.; Gregg, T.K.; Lopes, R.M. (Eds.). 2013. Introduction. In Modeling volcanic processes: The Physics and Mathematics of Volcanism. Cambridge University Press: 1-4. Cambridge.

Farías, C.; Basualto, D. 2020. Reactivating and calming volcanoes: the 2015 MW 8.3 Illapel megathrust strike. Geophysical Research Letters 47 (16): e2020GL087738.

Farías, C.; Lupi, M.; Fuchs, F.; Miller, S.A. 2014. Seismic activity of the Nevados de Chillán volcanic complex after the 2010 Mw8. 8 Maule, Chile, earthquake. Journal of Volcanology and Geothermal Research 283: 116-126.

Feignon, J.G.; Cluzel, N.; Schiavi, F.; Moune, S.; Roche, O.; Clavero, J.; Schiano, P.; Auxerre, M. 2022. High CO2 content in magmas of the explosive andesitic Enco eruption of Mocho-Choshuenco volcano (Chile). Bulletin of Volcanology 84: 40. doi:

Ferguson, K.M.; Dungan, M.A.; Davidson, J.P.; Colucci, M.T. 1992. The Tatara-San Pedro Volcano, 36 S, Chile: a chemically variable, dominantly mafic magmatic system. Journal of Petrology 33 (1): 1-43.

Fierstein, J.; Sruoga, P.; Amigo, Á.; Elissondo, M.; Rosas, M. 2013. Tephra in Argentina establishes postglacial eruptive history of Laguna del Maule volcanic field in Chile. International Association of Volcanology and Chemistry of the Earth's Interior, Scientific Assembly-2013: Forecasting Volcanic Activity: reading and translating the messages of nature for society: 23-17.

Fontijn, K.; Lachowycz, S.M.; Rawson, H.; Pyle, D.M.; Mather, T.A.; Naranjo, J.A.; Moreno-Roa, H. 2014. Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quaternary Science Reviews 89: 70-84.

Fontijn, K.; Rawson, H.; Van Daele, M.; Moernaut, J.; Abarzúa, A.M.; Heirman, K.; Bertrand, S.; Pyle, D.M.; Mather, T.A.; De Batist, M.; Naranjo, J.A.; Moreno, H. 2016. Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District. Quaternary Science Reviews 137: 234-254.

Forte, P.; Castro, J. 2019. H2O-content and temperature limit the explosive potential of rhyolite magma during Plinian eruptions. Earth and Planetary Science Letters 506: 157-167.

Forte, P.; Domínguez, L.; Bonadonna, C.; Gregg, C.E.; Bran, D.; Bird, D.; Castro, J.M. 2018. Ash resuspension related to the 2011-2012 Cordón Caulle eruption, Chile, in a rural community of Patagonia, Argentina. Journal of Volcanology and Geothermal Research 350: 18-32.

Forte, P.; Rodríguez, L.; Jácome Paz, M.P.; Caballero García, L.; Alpízar Segura, Y.; Bustos, E.; Perales Moya, C.; Espinoza, E.; Vallejo, S.; Agusto, M. 2021. Volcano monitoring in Latin America: taking a step forward: Preface to Special Issue on Volcano Observatories in Latin America. Volcanica 4 (S1). doi:

Forte, P.; Ramires, A.; De Abrantes, L.; Llano, J.; Domínguez, L.; Carbajal, F.; García, S.; Sruoga, P.; Bonadonna, C. 2022. La erupción no será transmitida: características, impactos y asistencia durante el ciclo eruptivo 2018-2019 del volcán Peteroa, Argentina. Revista de la Asociación Geológica Argentina 79 (1): 47-71.

Forte, P.; De Abrantes, L.; Ramíres, A. 2024. Gestión de la crisis eruptiva 2018-2019 del volcán Peteroa, Argentina: Aportes desde la interdisciplina. Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres (REDER 8) (1): 37-55.

Franco, L.; Palma, J.L.; Lara, L.E.; Gil-Cruz, F.; Cardona, C.; Basualto, D.; San Martín, J. 2019. Eruptive sequence and seismic activity of Llaima volcano (Chile) during the 2007-2009 eruptive period: Inferences of the magmatic feeding system. Journal of Volcanology and Geothermal Research 379: 90-105.

Franco-Marín, L.; Lara, L.E.; Basualto, D.; Palma, J.L.; Gil-Cruz, F.; Cardona, C.; Farias, C. 2023. A long time of rest at Llaima volcano following the 2010 MW 8.8 Maule earthquake, Chile. Journal of Volcanology and Geothermal Research 440. doi:

Futa, K.; Stern, C.R. 1988. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the southern Andes. Earth and Planetary Science Letters 88 (3-4): 253-262.

García, S.; Badi, G. 2021. Towards the development of the first permanent volcano observatory in Argentina. Volcanica 4 (S1): 21-48.

Garrido, M.L. 2017. El estudio científico de los volcanes en la América colonial española. Llull: Revista de la Sociedad Española de Historia de las Ciencias y de las Técnicas 40 (84): 125-155.

Gho, R.; Sruoga, P.; Amigo, Á.; Fierstein, J.; Elissondo, M.; Kaufman, J.; Toloza, V.; Calderón, R. 2019. Peligros del Complejo Volcánico Laguna del Maule, región del Maule, Chile, y provincias de Mendoza y Neuquén, Argentina. Servicio Nacional de Geología y Minería-Servicio Geológico Minero Argentino, Publicación Geológica Multinacional 8: 66 p., 1 mapa escala 1:75.000.

Gilbert, D.; Freundt, A.; Kutterolf, S.; Burkert, C. 2014. Post-glacial time series of explosive eruptions and associated changes in the magma plumbing system of Lonquimay volcano, south central Chile. International Journal of Earth Sciences 103: 2043-2062.

González-Ferrán, O. 1995. Volcanes de Chile. Instituto Geográfico Militar: 635 p. Santiago.

González-Vidal, D.; Sens-Schönfelder, C.; Palma, J.L.; Quiero, F.; Franco, L.; Miller, M.; Lange, D.; Sielfeld, G.; Cembrano, J. 2022. The Hiccup of Villarrica volcano (Chile) during the 2015 eruption and its expression in LP activity and VLP ground motion. Geophysical Journal International 231 (2): 1309-1323.

Grau, H.R.; Foguet, J. 2021. El legado de la urbanización europea en el cono sur sudamericano: Una aproximación a la historia de las teleconexiones sobre la ecología del territorio. Asociación Argentina de Ecología; Ecología Austral 31 (1): 114-128.

Groeber, P.; Corti, H. 1920. Estudio geológico de las termas de Copahue. Estudio químico preliminar de las muestras de aguas recogidas en el terreno. Dirección General de Minas, Serie F, Informes Preliminares y Comunicaciones, Boletín 3: 1-20. Buenos Aires.

Grondahl, C.; Zajacz, Z. 2022. Sulfur and chlorine budgets control the ore fertility of arc magmas. Nature Communications 13 (1): 4218.

Gutiérrez, F.; Parada, M.A. 2010. Numerical modeling of time-dependent fluid dynamics and differentiation of a shallow basaltic magma chamber. Journal of Petrology 51 (3): 731-762.

Harambour, A. 2019. Soberanías fronterizas: Estados y Capital en la colonización de Patagonia (Argentina y Chile, 1830-1922). Ediciones Universidad Austral de Chile: 328 p.

Havestadt, B. 1777. Chilidúgú sive tractatus linguae chilensis, Münster, edición facsímil: Julius Platzmann (editor),1883. Leipzig.

Hayes, J.L.; Calderón, R.; Deligne, N.I.; Jenkins, S.F.; Leonard, G.S.; McSporran, A.M.; Williams, G.T.; Wilson, T.M. 2019. Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile. Journal of Volcanology and Geothermal Research 374: 142-159.

Hedenquist, J.W.; Lowenstern, J.B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature 370: 519-527.

Hervé, F.; Charrier, R. 2016. Legado de Ignacio Domeyko (1802-1889) a la geología y a la institucionalidad científica de Chile. Revista del Museo de la Plata 1: 138-148.

Hickey, R.L.; Gerlach, D.C.; Frey, F.A. 1984. Geochemical variations in volcanic rocks from central-south Chile (33-42° S). In Andean Magmatism: chemical and isotopic constraints (Harmon, R.S.; Barreiro, B.A.; editors). Shiva Publishing Limited,: 72-95.

Hickey, R.L.; Frey, F.A.; Gerlach, D.C.; López‐Escobar, L. 1986. Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34-41 S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. Journal of Geophysical Research: Solid Earth, 91 (6): 5963-5983.

Hickey-Vargas, R.; Sun, M.; López-Escobar, L.; Moreno-Roa, H.; Reagan, M.K.; Morris, J.D.; Ryan, J.G. 2002. Multiple subduction components in the mantle wedge: evidence from eruptive centers in the Central Southern volcanic zone, Chile. Geology 30 (3): 199-202.

Hickey-Vargas, R.; Holbik, S.; Tormey, D.; Frey, F.A.; Moreno, H. 2016. Basaltic rocks from the Andean Southern Volcanic Zone: Insights from the comparison of along-strike and small-scale geochemical variations and their sources. Lithos 258: 115-132.

Higgins, M.D.; Voos, S; Vander Auwera, J. 2015. Magmatic processes under Quizapu volcano, Chile, identified from geochemical and textural studies. Contributions to Mineralogy and Petrology 170 (51): doi:

Hildreth, W.; Moorbath, S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology 98: 455-489.

Hildreth, W.; Drake, R.E. 1992. Volcán Quizapu, Chilean Andes. Bulletin of Volcanology 54: 93-125.

Hildreth, W.; Fierstein, J.; Godoy, E.; Drake, R.E.; Singer, B. 1999. The Puelche Volcanic Field: extensive Pleistocene rhyolite lava flows in the Andes of central Chile. Revista Geológica de Chile 26 (2): 275-309.

Hildreth, W.; Godoy, E.; Fierstein, J.; Singer, B. 2010. Laguna del Maule Volcanic Field: Eruptive history of a Quaternary basalt-to-rhyolite distributed volcanic field on the Andean range crest in central Chile. Servicio Nacional de Geología y Minería, Boletín 63: 145 p.

Hilley, G.E. (editor); Brodsky, E.E.; Roman, D.; Shilling-ton, D.J.; Brudzinski, M.; Behn, M.; Tobin, H.; and the SZ4D RCN (2022). SZ4D Implementation Plan. Stanford Digital Repository. Available at

Holm, P.; Soager, N.; Dyhr, Ch.; Llambías, E.J. 2011. Sr-Nd-Pb Isotope evidence for the derivation for Maipo and other NSVZ rocks, Andes: less need for a subduction zone contribution. In Congreso Geológico Argentino, No. 18, Actas:1267. Neuquén.

Hora, B. 2018. Private protection initiatives in mountain areas of Southern Chile and their perceived impact on local development—the case of Pumalin Park. Sustainability 10 (5): 1584. doi: https://doi: 10.3390/su10051584

Hudson, T.S.; Kendall, J.M.; Blundy, J.D.; Pritchard, M.E.; MacQueen, P.; Wei, S.S.; Gottsmann, J.H.; Lapins, S. 2023. Hydrothermal fluids and where to find them: Using seismic attenuation and anisotropy to map fluids beneath Uturuncu volcano, Bolivia. Geophysical Research Letters 50: 12 p. doi:

Jara, G.; Elissondo, M.; Lara, L.; Kaufman, J.; Sruoga, P. 2020. Peligros del Volcán Lanín, región de la Araucanía, Chile y provincia de Neuquén, Argentina. Servicio Nacional de Geología y Minería-Servicio Geológico Minero Argentino, Publicación Geológica Multinacional 9: 47 p., 1 mapa escala 1:50.000.

Jia, H.; Wei, D. 2021. Relative motion of plates related to the Chile triple junction and geodynamic significance. Chinese Journal of Geophysics 64: 10: 3567-3575. doi:

Johnson, J.B.; Palma, J.L. 2015 Lahar infrasound associated with Volcán Villarrica’s 3 March 2015 eruption. Geophysical Research Letters 42 (15): 6324-6331.

Johnson, J.B.; Watson, L.M.; Palma, J.L.; Dunham, E.M.; Anderson, J.F. 2018. Forecasting the eruption of an open‐vent volcano using resonant infrasound tones. Geophysical Research Letters 45 (5): 2213-2220.

Kaufman, J.F.; Elissondo, M.; Sruoga, P.; Yamín, M.G. 2023. Peligrosidad del volcán Copahue. Provincia del Neuquén, República Argentina. Servicio Geológico Minero Argentino, Instituto de Geología y Recursos Minerales, Serie de Contribuciones Técnicas Peligrosidad Geológica 24: 51 p. Buenos Aires, .

Kendrick, E.; Bevis, M.; Smalley, R. Jr.; Brooks, B.; Vargas, R.; Laurıá, E.; Fortes, L. 2003. The Nazca-South America Euler vector and its rate of change. Journal of South American Earth Sciences 16: 125-131.

Kent, A.J. 2014. Preferential eruption of andesitic magmas: Implications for volcanic magma fluxes at convergent margins. Geological Society of London, Special Publications 385 (1): 257-280.

Kent, A.J.; Darr, C.; Koleszar, A.M.; Salisbury, M.J.; Cooper, K.M. 2010. Preferential eruption of andesitic magmas through recharge filtering. Nature Geoscience 3 (9): 631-636.

Kilian, R.; Behrmann, J.H. 2003. Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes. Journal of the Geological Society 160 (1): 57-70.

Klug, J.D.; Ramírez, A.; Singer, B.S.; Jicha, B.R.; Mixon, E.; Martínez, P. 2022. Intercalibration of the Servicio Nacional de Geología y Minería (Sernageomin), Chile and WiscAr 40Ar/39Ar laboratories for Quaternary dating. Quaternary Geochronology 72: 101354.

Kratzmann, D.J.; Carey, S.; Scasso, R.; Naranjo, J.A. 2009. Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. Bulletin of Volcanology 71: 419-439.

Lahsen, A.; Sepúlveda, F.; Rojas, J.; Palacios, C. 2005. Present status of geothermal exploration in Chile. In World Geothermal Congress, Proceedings: 9 p. Antalya, Turkey.

Lahsen, A.; Muñoz, N.; Parada, M.A. 2010. Geothermal development in Chile. In World Geothermal Congress, Proceedings 25: 7 p.

Lahsen, A.; Rojas, J.; Morata, D.; Aravena, D. 2015. Geothermal exploration in Chile: country update. In World Geothermal Congress, Proceedings: 14 p. Melbourne, Australia.

Lange, D.; Rietbrock, A.; Haberland, C.; Bataille, K.; Dahm, T.; Tilmann, F.; Flüh, E.R. 2007. Seismicity and geometry of the south Chilean subduction zone (41.5 S-43.5 S): Implications for controlling parameters. Geophysical Research Letters 34 (6). doi:

Lange, D.; Cembrano, J.; Rietbrock, A.; Haberland, C.; Dahm, T.; Bataille, K. 2008. First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics 455 (1-4): 14-24.

Lanzirotti, A.; Lee, L.; Head, E.; Sutton, S.R.; Newville, M.; McCanta, M.; Lerner, A.H.; Wallace, P.J. 2019. Direct measurements of copper speciation in basaltic glasses: understanding the relative roles of sulfur and oxygen in copper complexation in melts. Geochimica et Cosmochimica Acta 267 (90): 164-178. doi:

Lara, L.E.; Naranjo, J.A.; Moreno, H. 2004. Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5 S) after the 1960 (Mw: 9.5) Chilean earthquake: a structural interpretation. Journal of Volcanology and Geothermal Research 138 (1-2): 127-138.

Lara, L.E.; Cembrano, J.; Lavenu, A. 2008. Quaternary vertical displacement along the Liquiñe-Ofqui fault zone: Differential uplift and coeval volcanism in the Southern Andes? International Geology Review 50 (11): 975-993.

Lara, L.E.; Orozco, G.; Piña-Gauthier, M. 2012. The 1835 AD fissure eruption at Osorno volcano, Southern Andes: Tectonic control by the intraarc stress field instead of remote megathrust-related dynamic strain. Tectonophysics 530: 102-110.

Lara, L.E.; Moreno, R.; Amigo, Á.; Hoblitt, R.P.; Pierson, T.C. 2013. Late Holocene history of Chaitén Volcano: New evidence for a 17th century eruption. Andean Geology 40 (2): 249-261. doi:

Lara, L.E.; Flores, F.; Calderón, R.; Cardona, C. 2021. Volcano hazards and risks in Chile. In Forecasting and Planning for Volcanic Hazards, Risks, and Disasters: 617-633. Elsevier. doi:

Larenas, J. 2014. Resistencia y territorio: El caso de Chaitén en la zona austral de Chile. In Vulnerabilidad y desastres socionaturales (Arteaga, C.; Tapia, R.; editors). Experiencias recientes en Chile. Santiago. Editorial Universitaria 117-130.

Lavenu, A.; Cembrano, J. 1999. Compressional-and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). Journal of Structural Geology, 21 (12): 1669-1691.

Llambías, E.J. 1964. Geología y petrografía del volcán Payún Matrú. Tesis Doctoral (Inédito). Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales: 98 p.

Lohmar, S.; Robin, C.; Gourgaud, A.; Clavero, J.; Parada, M.Á.; Moreno, H.; Ersoy, O.; López-Escobar, L.; Naranjo, J.A. 2007. Evidencias de interacción magma-agua durante el ciclo eruptivo explosivo de la Ignimbrita Licán (13.800 años AP), volcán Villarrica (sur de Chile). Revista Geológica de Chile 34 (2): 233-247. doi:

Lohmar, S.; Parada, M.; Gutiérrez, F.; Robin, C.; Gerbe, M.C. 2012. Mineralogical and numerical approaches to establish the pre-eruptive conditions of the mafic Lican Ignimbrite, Villarrica Volcano (Chilean Southern Andes). Journal of Volcanology and Geothermal Research 235: 55-69.

López-Escobar, L. 1984. Petrology and chemistry of volcanic rocks of the Southern Andes. In Andean Magmatism: Chemical and Isotopic Constraints (Harmon, R.S.; Barriero, B.A.; editors). Shiva Geology Series, Shiva Publishing: 47-71.

López-Escobar, L.; Kilian, R.; Kempton, P.D.; Tagiri, M. 1993. Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41 30’and 46 00’S, Chile. Revista Geológica de Chile 20 (1): 33-55.

López-Escobar, L.; Cembrano, J.; Moreno, H. 1995. Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37-46 S). Revista Geológica de Chile 22 (2): 219-234

López-Escobar, L.; Déruelle, B.; Lavenu, A.; Thiele, R. 1997. The Nevados de Chillán volcanic complex (36º50’S): Differentiated lavas uncontaminated by continental crust in the Southern Volcanic Zone of the Andes. In Congreso Geológico Chileno 8, Actas: 347-351.

Lupi, M.; Trippanera, D.; González, D.; D’amico, S.; Acocella, V.; Cabello, C.; Muelle Stef, M.; Tassara, A. 2020. Transient tectonic regimes imposed by megathrust earthquakes and the growth of NW-trending volcanic systems in the Southern Andes. Tectonophysics 774: 228204. doi:

Mader, H.M.; Manga, M.; Koyaguchi, T. 2004. The role of laboratory experiments in volcanology. Journal of Volcanology and Geothermal Research 129: 1-5.

Major, J.J.; Lara, L.E. 2013. Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption. Andean Geology 40 (2): 196-215. doi:

Major, J.J.; Pierson, T.C.; Hoblitt, R.P.; Moreno, H. 2013. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): Forest disturbances, deposits, and dynamics. Andean Geology 40 (2): 324-358. doi:

Mallea-Lillo, F.; Parada, M.A.; Morgado, E.; Contreras, C.; Hübner, D. 2022. Contrasting sources and conditions of shallow magmatic reservoirs of the Fui Group small eruptive centres associated with the Liquiñe-Ofqui Fault Zone (Chilean Andes). Journal of South American Earth Sciences 117: 103875. doi:

Mancini, M.V.; Franco, N.V.; Brook, G.A. 2013. Palaeoenvironment and early human occupation of southernmost South America (South Patagonia, Argentina). Quaternary International 299: 13-22.

Marín, A.; Vergara-Pinto, F.; Prado, F.; Farías, C. 2020. Living near volcanoes: Scoping the gaps between the local community and volcanic experts in southern Chile. Journal of Volcanology and Geothermal Research 398. doi:

Marshall, A.A.; Brand, B.D.; Martínez, V.; Bowers, J.M.; Walker, M.; Wanless, V.D.; Andrews, B.; Manga, M.; Valdivia, P.; Giordano, G. 2022. The mafic Curacautín ignimbrite of Llaima volcano, Chile. Journal of Volcanology and Geothermal Research 421: 107418.

Martin, R.S.; Watt, S.F.L.; Pyle, D.M.; Mather, T.A.; Matthews, N.E.; Georg, R.B.; Day, J.A.; Fairhead, T.; Witt, M.L.I.; Quayle, B.M. 2009. Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. Journal of Volcanology and Geothermal Research 184 (3-4): 462-472.

Martínez, C.; Peña-Araya, V.; Marmo, C.; Le Morvan, M.; Delpech, G.; Fontijn, K.; Siani, G.;Cosyn-Wexsteen, L. 2023. BOOM! Tephrochronological dataset and exploration tool of the Southern (33-46° S) and Austral (49-55° S) volcanic zones of the Andes. Quaternary Science Reviews 316: 108254.

Martínez, P.; Singer, B.S.; Roa, H.M.; Jicha, B.R. 2018. Volcanologic and petrologic evolution of Antuco-Sierra Velluda, Southern Andes, Chile. Journal of Volcanology and Geothermal Research 349: 392-408.

Matin, N.; Forrester, J.; Ensor, J. 2018. What is equitable resilience? World development 109: 197-205.

McGee, L.E.; Brahm, R.; Rowe, M.C.; Handley, H.K.; Morgado, E.; Lara, L.E.; Turner, M.; Vinet, N.; Parada, M.A.; Valdivia, P. 2017. A geochemical approach to distinguishing competing tectono-magmatic processes preserved in small eruptive centres. Contributions to Mineralogy and Petrology 172: 1-26.

McMillan, N.J.; Harmon, R.S.; Moorbath, S.; López-Escobar, L.; Strong, D.F. 1989. Crustal sources involved in continental arc magmatism: A case study of volcan Mocho-Choshuenco, southern Chile. Geology 17 (12): 1152-1156.

Mella, M.A. 2009. Petrogêneses do complexo vulcânico Yate (42, 30ºS), Andes do Sul, Chile (Doctoral dissertation, Universidade de São Paulo).

Mella, M.; Moreno, H.; Vergés, A.; Quiroz, D.; Bertin, L.; Basualto, D.; Bertin, D.; Garrido, N. 2015. Productos volcánicos, impactos y respuestra a la emergencia del ciclo eruptive abril-mayo (2015) del Volcán Calbuco. In Congreso Geológico Chileno, No. 14. Actas: 98-101. La Serena.

Montané, J. 1968. Paleo-indian remains from Laguna de Tagua Tagua, central Chile. Science 161 (3846): 1137-1138.

Moreno, H. 1975. Características Petrológicas del volcanismo Cenozoico Superior en los Andes del Sur de Chile (39°00’-41°30’S). In Congreso Geológico Argentino, No. 6, Actas 2: 131-147.

Moreno, H. 1976. The Upper Cenozoic volcanism in the Andes of Southern Chile, In International Association of Volcanology and Chemistry of the Earth's Interior, Proceedings of the Symposium on Andean and Antarctic Volcanology Problems (González-F.; O.; editor): 143-171. Santiago

Moreno, H. 2004. Lorenzo Casertano (1921-2004). Revista Geológica de Chile 31 (2): 368-369. Moreno, H. 2013. Ángel Leopoldo López Escobar (1940-2013). Andean Geology 40 (3): 589-590. doi;

Moreno, H.; Varela, J. 1985. Geology, volcanism and Quaternary pyroclastic deposits from central-south of Chile. In Volcanic soils of Chile. (Tosso, J.; editor).Agriculture and Livestock Research Institute (INIA La Platina), Santiago.

Moreno, H.; Fuentealba, G. 1994. The May 17-19 1994 Llaima volcano eruption, southern Andes 38°42’8-71°44’W. Revista Geológica de Chile 21 (1): 167-171.

Morgado, E.; Parada, M.A.; Contreras, C.; Castruccio, A.; Gutiérrez, F.; McGee, L.E. 2015. Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile. Journal of Volcanology and Geothermal Research 306: 1-16.

Morgado, E.; Parada, M.A.; Morgan, D.J.; Gutiérrez, F.; Castruccio, A.; Contreras, C. 2017. Transient shallow reservoirs beneath small eruptive centres: Constraints from Mg-Fe interdiffusion in olivine. Journal of Volcanology and Geothermal Research 347: 327-336.

Morgado, E.; Morgan, D.J.; Castruccio, A.; Ebmeier, S.K.; Parada, M.Á.; Brahm, R.; Harvey, J.; Gutiérrez, F.; Walshaw, R. 2019a. Old magma and a new, intrusive trigger: using diffusion chronometry to understand the rapid-onset Calbuco eruption, April 2015 (Southern Chile). Contributions to Mineralogy and Petrology, 174: 1-11.

Morgado, E.; Morgan, D.J.; Harvey, J.; Parada, M.A.; Castruccio, A.; Brahm, R.; Gutiérrez, F.; Georgiev, B.; Hammond, S.J. 2019b. Localised heating and intensive magmatic conditions prior to the 22-23 April 2015 Calbuco volcano eruption (Southern Chile). Bulletin of Volcanology 81: 24.

Moussallam, Y.; Bani, P.; Schipper, C.I.; Cardona, C.; Franco, L.; Barnie, T.; Amigo, Á.; Curtis, A.; Peters, N.; Aiuppa, A.; Giudice, G.; Oppenheimer, C. 2018. Unrest at the Nevados de Chillán volcanic complex: a failed or yet to unfold magmatic eruption? Volcanica 1 (1): 19-32.

Moussallam, Y.; Barnie, T.; Amigo, Á.; Kelfoun, K.; Flores, F.; Franco, L.; Cardona, C.; Córdova, L.; Toloza, V. 2021. Monitoring and forecasting hazards from a slow growing lava dome using aerial imagery, tri-stereo Pleiades-1A/B imagery and PDC numerical simulation. Earth and Planetary Science Letters 564: 116906.

Moussallam, Y.; Lee, H.J.; Ding, S.; DeLessio, M.; Everard, J.L.; Spittle, E.; Lu, G.; Baur, J.; Glazer, E.; Peccia, A.; Zaman, M.; Alper, N.; Slibeck, B. 2023. Temperature of the Villarrica lava lake from 1963 to 2015 constrained by phase-equilibrium and a new glass geothermometer for Basaltic Andesites. Journal of Petrology 64 (2): egad003. doi:

Namur, O.; Montalbano, S.; Bolle, O.; Vander Auwera, J. 2020. Petrology of the April 2015 eruption of Calbuco volcano, southern Chile. Journal of Petrology 61 (8): 33 p. doi:

Naranjo, J.A.; Moreno, H. 1991. Actividad explosiva postglacial en el volcán Llaima, Andes del Sur (38° 45’S). Revista Geológica de Chile 18 (1): 69-80.

Naranjo, J.A.; Haller, M.J. 2002. Erupciones holocenas principalmente explosivas del volcán Planchón, Andes del sur (35 15’S). Revista Geológica de Chile 29 (1): 93-113.

Naranjo, J.A.; Lara, L.E. 2004. August-September 2003 small vulcanian eruption at the Nevados de Chillán Volcanic Complex (36° 50’S), Southern Andes (Chile). Revista Geológica de Chile 31 (2): 359-366.

Naranjo, J.A.; Polanco, E. 2004. The 2000 AD eruption of Copahue volcano, southern Andes. Revista Geológica de Chile 31 (2): 279-292.

Naranjo, J.A.; Stern, C.R. 2004. Holocene tephrochronology of the southernmost part (42°30’-45°S) of the Andean Southern Volcanic Zone. Revista Geológica de Chile 31 (2): 225-240.

Naranjo, J.A.; Moreno, H.; Banks, N.G. 1993. La erupción del volcán Hudson en 1991 (46° S): Región IX, Aisén, Chile. Servicio Nacional de Geología y Minería, Boletín 44: 50 p. Santiago.

Naranjo, J.A.; Haller, M.J.F.; Ostera, H.A.; Pesce, A.H.; Sruoga, P. 1999. Geología y Peligros del Complejo Volcánico Planchón-Peteroa, Andes del Sur (35º15 S), Región del Maule, Chile-Provincia de Mendoza, Argentina. Servicio Nacional de Geología y Minería, Boletín 52: 55 p.

Naranjo, J.A.; Singer, B.S.; Jicha, B.R.; Moreno, H.; Lara, L.E. 2017. Holocene tephra succession of Puyehue-Cordón Caulle and Antillanca/Casablanca volcanic complexes, southern Andes (40-41° S). Journal of Volcanology and Geothermal Research 332: 109-128.

Orellana, F.; Pérez, R.; Rungruangsakorn, C.; Stefani, E.; Salazar, C. 2023. Proyecto Geoparque Pillanmapu: estrategias de gobernanza local para la resiliencia ante escenarios multiamenaza en Chile Central. In Libro de Resúmenes del Foro Internacional de Peligros Volcánicos “Volcanes y Sociedad: Riesgo y Prevención” (IX FIPVO), No. 9 (Masías, P.; Ortega, M.; editors). Instituto Geológico Minero y Metalúrgico: 394-400. Arequipa

Ottone, E.G. 2008. José Sánchez Labrador (1717-1798) y la geología del Paraguay Natural. In Los geólogos y la geología en la historia argentina (Aceñolaza, F.G.; editor). Instituto Superior de Correlación Geológica, Serie Correlación Geológica 24: 43-54.

Oyarzún, A.; Lara, L.E.; Tassara, A. 2022. Decoding the plumbing system of Nevados de Chillán Volcanic complex, Southern Andes. Journal of Volcanology and Geothermal Research 422: 107455. doi:

Pallister, J.S.; Diefenbach, A.K.; Burton, W.C.; Muñoz, J.; Griswold, J.P.; Lara, L.E.; Lowerstern, J.B.; Valenzuela, C.E. 2013. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma. Andean Geology 40 (2): 277-294. doi:

Pardini, F.; Burton, M.; Arzilli, F.; La Spina, G.; Polacci, M. 2018. SO2 emissions, plume heights and magmatic processes inferred from satellite data: The 2015 Calbuco eruptions. Journal of Volcanology and Geothermal Research 361: 12-24.

Pearce, R.K.; Sánchez de la Muela, A.; Moorkamp, M.; Hammond, J.O.; Mitchell, T.M.; Cembrano, J.; Araya Vargas, J.; Meredith, P.G.; Iturrieta, P.; Pérez-Estay, N.; Marshall, N.R.; Smith, J.; Yánez, G.; Ashley Griffith, W.; Marquardt, C.; Stanton-Yonge, A.; Núñez, R. 2020. Reactivation of fault systems by compartmentalized hydrothermal fluids in the Southern Andes revealed by magnetotelluric and seismic data. Tectonics 39 (12). doi:

Pellet, P.; Ugarte, E.; Osorio, E.; Herrera, F. 2005. Conservación de la biodiversidad en Chile, ¿legalmente suficiente? La necesidad de cartografiar la ley antes de decidir. Revista Chilena de Historia Natural 78: 125-141.

Pérez-Estay, N.; Ruz-Ginouves, J.; Pérez-Flores, P.; Sielfeld, G.; Roquer, T.; Cembrano, J. 2023. Decoding the state of stress and fluid pathways along the Andean Southern Volcanic Zone. Communications Earth and Environment 4 (390). doi:

Petit-Breuilh, M.E. 2004. La historia eruptiva de los volcanes hispanoamericanos (siglos XVI al XX). Servicio de Publicaciones del Exmo. Cabildo Insular de Lanzarote-Casa de los Volcanes: 431 p.

Petit-Breuilh, M.E. 2007. La concepción científica de la dinámica terrestre en los Cronistas de Indias. In Orbis incognitvs. Avisos y legajos del Nuevo Mundo: homenaje al profesor Luis Navarro García (Navarro Antolín, F.; editor). Universidad de Huelva: 405-420.

Petit-Breuilh, M. 2016. Volcanes fronterizos en América Latina y la importancia de los comités de frontera en casos de desastre: Chile y Argentina en el siglo XX. In Clima, desastres y convulsiones sociales en España e Hispanoamérica, siglos XVII-XX (Arrioja Díaz Viruell, L.A.; Alberola Romá, A.; editores). Alicante: El Colegio de Michoacán; Universidad de Alicante: 345-358.

Petit-Breuilh, M.E. 2023. La historia eruptiva de los volcanes hispanoamericanos (siglos XVI al XX): El modelo chileno. Trébol ediciones: 365 p. Santiago.

Petrinovic, I.A.; Villarosa, G.; D’Elia, L.; Guzmán, S.; Páez, G.N.; Outes, V.; Manzoni, C.; Delménico, A.; Balbis, C.; Carniel, R.; Hernando, I.R. 2014. La erupción del 22 de diciembre de 2012 del volcán Copahue, Neuquén, Argentina: caracterización del ciclo eruptivo y sus productos. Revista de la Asociación Geológica Argentina 71 (2): 161-173.

Pilger, R. 2024. Tracing hotspot traces in the Andes. Andean Geology 51 (1): 1-62. doi:

Pineda, C.; Hammer, J.; First, E.; Morata, D. 2021. Storage conditions of a caldera-forming volcanic eruption: Insights from the Pudahuel rhyolitic ignimbrite in central Chile (32° 10' S). Lithos 400: 106382.

Pino, M.; Chávez-Hoffmeister, M.; Navarro-Harris, X.; Labarca, R. 2013. The late pleistocene Pilauco site, Osorno, south-central Chile. Quaternary International 299: 3-12.

Pioli, L.; Scalisi, L.; Costantini, L.; Di Muro, A.; Bonadonna, C.; Clavero, J. 2015. Explosive style, magma degassing and evolution in the Chaimilla eruption, Villarrica volcano, Southern Andes. Bulletin of Volcanology 77: 1-14.

Piquer, J.; Yáñez, G.; Rivera, O.; Cooke, D.R. 2019. Long-lived crustal damage zones associated with fault intersections in the high Andes of Central Chile. Andean Geology 46 (2): 223-239. doi:

Pistolesi, M.; Cioni, R.; Bonadonna, C.; Elissondo, M.; Baumann, V.; Bertagnini, A.; Chiari, L.; González, R.; Rosi, M.; Francalanci, L. 2015. Complex dynamics of small-moderate volcanic events: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bulletin of Volcanology 77 (3): 24 p.

Pizarro, C.; Parada, M. A.; Contreras, C.; Morgado, E. 2019. Cryptic magma recharge associated with the most voluminous 20th century eruptions (1921, 1948 and 1971) at Villarrica Volcano. Journal of Volcanology and Geothermal Research, 384, 48-63. doi: https://doi: 10.1016/j.jvolgeores.2019.07.001

Poeppig, E. 1835. Reise in Chile, Peru und auf dem Amazonestrome, während der Jahre 1827-1832. Volume 1, XVIII: 466 p.

Polanski, J. 1972. Descripción geológica de la hoja 24a-b, Cerro Tupungato, Provincia de Mendoza: carta geológico-económica de la República Argentina, escala 1:200.00. Servicio Nacional Minero Geológico. Boletín 128: 127 p. Buenos Aires.

Poppe, S.; Gilchrist, J.T.; Breard, E.C.P.; Graettinger, A.; Pansino, S. 2022. Analog experiments in volcanology: towards multimethod, upscaled, and integrated models. Bulletin of Volcanology 84 (5): 52. doi:

Porter, R.; Gilbert, H.; Zandt, G.; Beck, S.; Warren, L.; Calkins, J.; Alvarado, P.; Anderson, M. 2012. Shear wave velocities in the Pampean flat‐slab region from Rayleigh wave tomography: Implications for slab and upper mantle hydration. Journal of Geophysical Research, Solid Earth 117 (B11): 301-322 . doi:

Pritchard, M.E.; Jay, J.A.; Aron, F.; Henderson, S.T.; Lara, L.E. 2013. Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nature Geoscience 6 (8): 632-636.

Radovich, J.C. 2013. Las Ciencias Sociales y los procesos catastróficos. Aspectos teórico/metodológicos y estudios de caso: las erupciones volcánicas en Patagonia en años recientes. Estudios de Antropología Rural. Facultad de Filosofía y Letras: 20. Buenos Aires.

Ramos, V.A. 2011. Doscientos años de Ciencias de la Tierra en la Argentina. Revista de la Asociación Geológica Argentina 68 (3): 392-406.

Ramos, S.; Tironi, M. 2022. An Inside Sun: Lickanantay Volcanology in the Salar de Atacama. Frontiers in Earth Science 10: 11 p.

Ranero, C.R.; Villaseñor, A.; Phipps Morgan, J.; Weinrebe, W. 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems 6 (12) Q12002: 25 p. doi: https://doi:10.1029/2005GC000997.

Rawson, H.; Naranjo, J.A.; Smith, V.; Fontijn, K.; Pyle, D.M.; Mather, T.A.; Moreno, H. 2015. The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile. Journal of Volcanology and Geothermal Research 299:103-129.

Rawson, H.; Keller, T.; Fontijn, K.; Pyle, D.M.; Mather, T.A.; Smith, V.C.; Naranjo, J.A. 2016a. Compositional variability in mafic arc magmas over short spatial and temporal scales: evidence for the signature of mantle reactive melt channels. Earth and Planetary Science Letters 456: 66-77.

Rawson, H.; Pyle, D.M.; Mather, T.A.; Smith, V.C.; Fontijn, K.; Lachowycz, S.M.; Naranjo, J.A. 2016b. The magmatic and eruptive response of arc volcanoes to deglaciation: Insights from southern Chile. Geology 44 (4): 251-254.

Rebolledo, A. 2022. Dinámica de las erupciones de 1846 y 1932 del volcán Quizapu: parámetros eruptivos y ascenso del magma en el conducto. Tesis para optar al título de Geólogo (Inédito). Universidad de Chile 176 p. Santiago.

Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.E.; Osores, S. 2016. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption. Journal of Volcanology and Geothermal Research 321: 44-57.

Reckziegel, F.; Folch, A.; Viramonte, J. 2019. ATLAS-1.0: Atmospheric Lagrangian dispersion model for tephra transport and deposition. Computers and Geosciences 131: 41-51.

Rivera, A.; Bown, F. 2013. Recent glacier variations on active ice capped volcanoes in the Southern Volcanic Zone (37-46 S), Chilean Andes. Journal of South American Earth Sciences 45: 345-356.

Rivera, A.; Bown, F.; Mella, R.; Wendt, J.; Casassa, G.; Acuña, C.; Rignot, E.; Clavero, J.; Brock, B. 2006. Ice volumetric changes on active volcanoes in southern Chile. Annals of Glaciology 43: 111-122.

Rivera, C.; Vallejos-Romero, A. 2015. La privatización de la conservación en Chile: repensando la gobernanza ambiental. Bosque 36 (1): 15-25.

Rodríguez, C.; Sellés, D.; Dungan, M.; Langmuir, C.; Leeman, W. 2007. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2 Degrees S; Andean Southern Volcanic Zone, Central Chile). Journal of Petrology, 48 (11): 2033-2061.

Romero Toledo, H.; Romero Aravena, H. 2015. Ecología política de los desastres: vulnerabilidad, exclusión socio-territorial y erupciones volcánicas en la patagonia chilena. Magallania (Punta Arenas) 43 (3): 7-26.

Romero, J.; Keller, W.; Marfull, V. 2014. Short chronological analysis of the 2007-2009 eruptive cycle and its nested cones formation at Llaima volcano. Journal of Technological Possibilism 2 (3): 1-9.

Romero, J.; Swanson, F.; Jones, J.; Morgavi, D.; Giordano, G.; Trolese, M.; Aguilera, F.; Izquierdo, T.; Perugini, D. 2023. The April 2015 Calbuco eruption pyroclastic density currents: deposition, impacts on woody vegetation, and cooling on the northern flank of the cone. Andean Geology 50 (3): 319-345. doi:

Romero, J.E.; Morgavi, D.; Arzilli, F.; Daga, R.; Caselli, A.; Reckziegel, F.; Viramonte, J.; Díaz-Alvarado, J.; Polacci, M.; Burton, M.; Perugini, D. 2016. Eruption dynamics of the 22-23 April 2015 Calbuco Volcano (southern Chile): Analyses of tephra fall deposits. Journal of Volcanology and Geothermal Research 317:15-29.

Romero, J.E.; Vera, F.; Polacci, M.; Morgavi, D.; Arzilli, F.; Alam, M.A.; Bustillos, J.E.; Guevara, A.; Johnson, J.B.; Palma, J.L.; Burton, M.; Cuenca, E.; Keller, W. 2018. Tephra from the 3 March 2015 sustained column related to explosive lava fountain activity at Volcán Villarrica (Chile). Frontiers in Earth Science 6: 98.

Romero, J.E.; Aguilera, F.; Delgado, F.; Guzmán, D.; Van Eaton, A.; Luengo, N.; Caro, J.; Bustillos, J.; Guevara, A.; Holbik, S.; Tormey, D.; Zegarra, I. 2020a. Combining ash analyses with remote sensing to identify juvenile magma involvement and fragmentation mechanisms during the 2018/19 small eruption of Peteroa volcano (Southern Andes). Journal of Volcanology and Geothermal Research 402: 106984. doi:

Romero, J.E.; Ramírez, V.; Alam, M.A.; Bustillos, J.; Guevara, A.; Urrutia, R.; Pisello, A.; Morgavi, D.; Criollo, E. 2020b. Pyroclastic deposits and eruptive heterogeneity of Volcán Antuco (37° S; Southern Andes) during the Mid to Late Holocene (< 7.2 ka). Journal of Volcanology and Geothermal Research 392: 106759.

Romero, J.E.; Alloway, B.V.; Gutiérrez, R.; Bertín, D.; Castruccio, A.; Villarosa, G.; Schipper, I.; Guevara, A.; Bustillos, J.; Pisello, A.; Daga, R.; Montiel, M.; Gleeman, E.; González, M.; Morgavi, D.; Riveiro Guevara, S.; Mella, M. 2021. Centennial-scale eruptive diversity at Volcán Calbuco (41.3° S; Northwest Patagonia) deduced from historic tephra cover-bed and dendrochronologic archives. Journal of Volcanology and Geothermal Research 417: 107281.

Romero, J.E.; Morgado, E.; Pisello, A.; Boschetty, F.; Petrelli, M.; Cáceres, F.; Alam, M.A.; Polacci, M.; Palma, J.L.; Arzilli, F.; Vera, F.; Gutiérrez, R.; Morgavi, D. 2022. Pre-eruptive Conditions of the 3 March 2015 Lava Fountain of Villarrica Volcano (Southern Andes). Bulletin of Volcanology 85: 20 p.

Roquer, T.; Arancibia, G.; Rowland, J.; Iturrieta, P.; Morata, D.; Cembrano, J. 2017. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes. Geothermics 66: 156-173.

Roquer, T.; Arancibia, G.; Crempien, J.G.; Mery, D.; Rowland, J.; Sepúlveda, J.; Veloso, E.E.; Nehler, M.; Bracke, R.; Morata, D. 2022. Multi-scale flow structure of a strike-slip tectonic setting: A self-similar model for the Liquiñe-Ofqui Fault System and the Andean Transverse Faults, Southern Andes (39-40° S). Geothermics 103: 102424.

Rudnick, R.L. 1995. Making continental crust. Nature 378 (6557): 571-578.

Ruprecht, P.; Bergantz, G.W.; Cooper, K.M.; Hildreth, W. 2012. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. Journal of Petrology 53 (4): 801-840.

Ruth, D.C.; Calder, E.S. 2014. Plate tephra: Preserved bubble walls from large slug bursts during violent Strombolian eruptions. Geology 42 (1): 11-14.

Ruth, D.C.; Cottrell, E.; Cortés, J.A.; Kelley, K.A.; Calder, E.S. 2016. From passive degassing to violent Strombolian eruption: the case of the 2008 eruption of Llaima volcano, Chile. Journal of Petrology 57 (9): 1833-1864.

Ruth, D.C.; Costa, F.; Bouvet de Maisonneuve, C.; Franco, L.; Cortés, J.A.; Calder, E.S. 2018. Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption. Nature Communications 9 (1): 2657.

Ruz, J.; Browning, J.; Cembrano, J.; Iturrieta, P.; Gerbault, M.; Sielfeld, G. 2020. Field observations and numerical models of a Pleistocene-Holocene feeder dyke swarm associated with a fissure complex to the east of the Tatara-San Pedro-Pellado complex, Southern Volcanic Zone, Chile. Journal of Volcanology and Geothermal Research 404: 107033.

Salazar, G.; Jalabert, D. 2015. Towards a landscape ecosophy. Interpreting how the Villarrica-Pucón urban system inhabitants in the Araucanía region of Chile perceive and relate with the dynamics of Landscape. urbe. Revista Brasileira de Gestão Urbana 8: 28-41.

Sánchez-Alfaro, P.; Sielfeld, G.; Van Campen, B.; Dobson, P.; Fuentes, V.; Reed, A.; Palma-Behncke, R.; Morata, D. 2015. Geothermal barriers, policies and economics in Chile-Lessons for the Andes. Renewable and Sustainable Energy Reviews 51: 1390-1401.

Sandoval, V.; Boano, C.; González-Muzzio, C.; Albornoz, C. 2015. Explorando potenciales vínculos entre resiliencia y justicia ambiental: el caso de Chaitén, Chile. Magallania (Punta Arenas) 43 (3): 37-49.

Scasso, R.A.; Corbella, H.; Tiberi, P. 1994. Sedimentological analysis of the tephra from the 12-15 August 1991 eruption of Hudson volcano. Bulletin of Volcanology 56: 121-132.

Schilling, M.; Contreras, M.; Farías, C.; Tascón, G.; Partarrieu, D. 2023. Geoparque Mundial Unesco Kütralkura: Laboratorio natural para la educación sobre los peligros volcánicos. In Libro de Resúmenes IX Foro Internacional de Peligros Volcánicos-IX FIPVO (Masías, P.; Ortega, M.; editors). Instituto Geológico Minero y Metalúrgico: 401-405. Lima.

Schindlbeck, J.C.; Freundt, A.; Kutterolf, S. 2014. Major changes in the post-glacial evolution of magmatic compositions and pre-eruptive conditions of Llaima Volcano, Andean Southern Volcanic Zone, Chile. Bulletin of Volcanology 76: 1-22.

Schipper, C.I.; Castro, J.M.; Tuffen, H.; James, M.R.; How, P. 2013. Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011-12): evidence from direct observations and pyroclast textures. Journal of Volcanology and Geothermal Research 262: 25-37.

Schipper, C.I.; Castro, J.M.; Kennedy, B.M.; Tuffen, H.; Whattam, J.; Wadsworth, F.; Paisley, R.; Fitzgerald, R.; Rhodes, E.; Schaefer, L.; Ashwell, P.A.; Forte, P.; Seropian, G.; Alloway, B. 2021. Silicic conduits as supersized tuffisites: Clastogenic influences on shifting eruption styles at Cordón Caulle volcano (Chile). Bulletin of Volcanology 83 (2): 1-22.

Sellés, D.; Dungan, M.; Langmuir, C.; Rodríguez, A.C.; Leeman, W.P. 2022. Magma and Mineral Composition Response to Increasing Slab-Derived Fluid Flux: Nevado de Longaví Volcano, Southern Chilean Andes. Frontiers in Earth Science 10: 846997. doi: https://doi: 10.3389/feart.2022.846997

Sepúlveda, C. 2002. Áreas privadas protegidas y territorio: la conectividad que falta. Cooperación Público-privada para la conservación, Capítulo IV. Revista Ambiente y Desarrollo 18 (2-3-4): 119-124.

Seropian, G.; Schipper, C.I.; Harmon, L.J.; Smithies, S.L.; Kennedy, B.M.; Castro, J.M.; Alloway, B.V.; Forte, P. 2021. A century of ongoing silicic volcanism at Cordón Caulle, Chile: New constraints on the magmatic system involved in the 1921-1922, 1960 and 2011-2012 eruptions. Journal of Volcanology and Geothermal Research 420: 107406. doi:

Sillitoe, R.H. 2010. Porphyry copper systems. Economic Geology and the Bulletin of the Society of Economic Geologists 105: 3-41.

Silva-Fragoso, A.; Ferrari, L.; Norini, G.; Orozco-Esquivel, T.; Corbo-Camargo, F.; Bernal, J.P.; Castro, C.; Arrubarrena-Moreno, M. 2021. Geology and conceptual model of the Domuyo geothermal area, northern Patagonia, Argentina. Journal of Volcanology and Geothermal Research 420: 107396.

Silva Parejas, C.; Druitt, T.H.; Robin, C.; Moreno, H.; Naranjo, J.A. 2010. The Holocene Pucón eruption of Volcán Villarrica, Chile: deposit architecture and eruption chronology. Bulletin of volcanology 72: 677-692.

Simkin, T.; Siebert, L. 1994. Volcanoes of the World. Geoscience Press, Smithonian Institute: 349 p. Tucson.

Singer, B.S.; Thompson, R.A.; Dungan, M.A.; Feeley, T.C.; Nelson, S.T.; Pickens, J.C.; Brown, L.L.; Wulff, A.W.; Davidson, J.P.; Metzger, J. 1997. Volcanism and erosion during the past 930 ky at the Tatara-San Pedro complex, Chilean Andes. Geological Society of America Bulletin 109 (2): 127-142.

Singer, B.S.; Jicha, B.R.; Harper, M.A.; Naranjo, J.A.; Lara, L.E.; Moreno-Roa, H. 2008. Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. Geological Society of America Bulletin 120 (5-6): 599-618.

Sruoga, P. 2008. El volcán Maipo: ¿una amenaza latente? In Sitios de Interés Geológico de la República Argentina. (CSIGA; editor). Instituto de Geología y Recursos Naturales, Servicio Geológico Minero Argentino, Anales 46: 1: 215-227.

Sruoga, P. 2016. Volcanología. In Diccionario Histórico de las Ciencias de la Tierra en la Argentina (Podgorny, I.; Ametrano, S.; Farro, M.; García, S.V.; Lopes, M.; Pupio, A.; Reguero, M.; Zárate, M.; editors). Archivo histórico del Museo de La Plata. 1ª. Ed.: 385-389.

Sruoga, P.; Llambías, E.J.; Fauqué, L.; Schonwandt, D.; Repol, D.G. 2005. Volcanological and Geochemical Evolution of the Diamante Caldera-Maipo Volcano Complex in the Southern Andes of Argentina (34° 10'S). Journal of South American Earth Sciences 19 (4): 401-406.

Sruoga, P.; Étcheverria, M.P.; Feineman, M.; Rosas, M.; Burkert, C.; Ibañes, O. 2012. Complejo Caldera Diamante-Volcán Maipo (34°10'S, 69º 50'O): evolución volcanológica y geoquímica e implicancias en su peligrosidad. Revista de la Asociación Geológica Argentina 69 (4): 508-530.

Stanton‐Yonge, A.; Griffith, W.A.; Cembrano, J.; St. Julien, R.; Iturrieta, P. 2016. Tectonic role of margin‐parallel and margin‐transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling. Tectonics 35 (9): 1990-2013. doi:

Stern, C.R. 1991. Role of subduction erosion in the generation of Andean magmas. Geology 19 (1): 78-81.

Stern, C.R. 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31 (2): 161-206.

Stern, C.R.; Futa, K.; Muehlenbachs, K.; Dobbs, F.M.; Munoz, J.; Godoy, E.; Charrier, R. 1984. Sr, Nd, Pb and O isotope composition of Late Cenozoic volcanics, northernmost SVZ (33-34° S). In Andean Magmatism: Chemical and Isotopic Constraints (Harmon, R.S.; Barriero, B.A.: editors). Shiva Geology Series, Shiva Publishing: 96-105. Cheshire. U.K.

Stern, C.R.; López-Escobar, L.; Moreno, H.; Clavero, J.; Naranjo, J.A.; Parada, M.A.; Skewes, M.A. 2007. Chilean Volcanoes. In The Geology of Chile (Moreno, T.; Gibbons, W.; editors). Geologic Society of London, Chapter 5: 149-180.

Swanson, F.J.; Jones, J.A.; Crisafulli, C.M.; Lara, A. 2013. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geology 40 (2): 359-391. doi:

Szakács, A. 1994. Redefining active volcanoes: a discussion. Bulletin of volcanology 56: 321-325.

Tassara, A.; Echaurren, A. 2012. Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophysical Journal International 189 (1): 161-168.

Tilling, R.I. 2009. Volcanism and associated hazards: the Andean perspective. Advances in Geosciences, 22: 125-137.

Tormey, D.R.; Hickey-Vargas, R.; Frey, F.A.; López-Escobar, L. 1991. Recent lavas from the Andean volcanicfront (33 to 42 S); interpretations of along-arc compositional variations. Geological Society of America Special paper 265: 57-77.

Tuffen, H.; James, M.R.; Castro, J.M.; Schipper, C.I. 2013. Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nature Communications 4 (1): 2709.

Valdivia, P.; Marshall, A.A.; Brand, B.D.; Manga, M.; Huber, C. 2022. Mafic explosive volcanism at Llaima Volcano: 3D x-ray microtomography reconstruction of pyroclasts to constrain shallow conduit processes. Bulletin of Volcanology 84: 1-18.

Van Eaton, A.R.; Amigo, Á.; Bertin, D.; Mastin, L.G.; Giacosa, R.E.; González, J.; Valderrama, O.; Fontijn, K.; Behnke, S.A. 2016. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile. Geophysical Research Letters 43 (7): 3563-3571.

Vander Auwera, J.; Montalbano, S.; Namur, O.; Bechon, T.; Schiano, P.; Devidal, J.L.; Bolle, O. 2021. The petrology of a hazardous volcano: Calbuco (Central Southern Volcanic Zone, Chile). Contributions to Mineralogy and Petrology 176: 1-34.

Vera, F.; Flores, F.; Toloza, V.; Jara, G.; Perales, C.; Bono, L.; Bertin, L.; Jorquera, C. 2023. Avances y desafíos en la evaluación de peligros volcánicos en la Red Nacional de Vigilancia Volcánica de Chile. In Foro Internacional de Peligros Volcánicos, No. 9. Volcanes y Sociedad: Riesgo y Prevención: 206-211. Arequipa.

Vergara-Pinto, F.; Romero, J.E. 2023. Perceptions of past and future eruptions of Puyehue-Cordón Caulle (Southern Chile): connecting neighbourhood, social cohesion and disaster memory in volcanic risk research. REDER 7: 88-110.

Vergara‐Pinto, F.; Marín, A. 2023. Stratigraphy of volcanic memory: Sociocultural dimensions of volcanic risk in the Southern Andes, Chile. Journal of Contingencies and Crisis Management. doi:

Vidal, R.; Tassara, A. 2023. Geo-Circuit for Interpretation of the Geological Evolution in the Nevados de Chillán Volcanic Complex, Chile. Geoheritage 15 (2): 63.

Vigide, N.; Yagupsky, D.; Barcelona, H.; Agusto, M.; Caselli, A. 2020. Structural analysis of the PlanchónPeteroa Volcanic Complex: Insights for the geothermal system. Journal of South American Earth Sciences 104: 102856.

Völker, D.; Kutterolf, S.; Wehrmann, H. 2011. Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes between 33 S and 46 S. Journal of Volcanology and Geothermal Research 205 (3-4): 114-129.

Wadsworth, F.B.; Llewellin, E.W.; Castro, J.M.; Tuffen, H.; Schipper, C.I.; Gardner, J.E.; Vasseur, J.; Foster, A.; Damby, D.E.; McIntosh, I.M.; Boettcher, S.; Unwin, H.E.; Heap, M.J.; Farquharson, J.I.; Dingwell, D.B.; Iacovino, K.; Paisley, R.; Jones, C.; Whattam, J. 2022. A reappraisal of explosive-effusive silicic eruption dynamics: syn-eruptive assembly of lava from the products of cryptic fragmentation. Journal of Volcanology and Geothermal Research 432: 107672.

Walshe, R.; Morin, J.; Donovan, A.; Vergara-Pinto, F.; Smith, C. 2023. Contrasting memories and imaginaries of Lonquimay volcano, Chile. International Journal of Disaster Risk Reduction 97: 104003.

Watt, S.F.; Pyle, D.M.; Mather, T.A. 2009a. The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth and Planetary Science Letters 277 (3-4): 399-407.

Watt, S.F.; Pyle, D.M.; Mather, T.A.; Martin, R.S.; Matthews, N.E. 2009b. Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. Journal of Geophysical Research: Solid Earth 114 (B4). doi:

Watt, S.F.; Pyle, D.M.; Mather, T.A. 2011. Geology, petrology and geochemistry of the dome complex of Huequi volcano, southern Chile. Andean Geology, 38 (2): 335-348. doi:

Watt, S.F.; Pyle, D.M.; Mather, T.A. 2013. Evidence of mid-to late-Holocene explosive rhyolitic eruptions from Chaitén Volcano, Chile. Andean Geology 40 (2): 216-226. doi:

Weller, D.J.; Stern, C.R. 2018. Along-strike variability of primitive magmas (major and volatile elements) inferred from olivine-hosted melt inclusions, southernmost Andean Southern Volcanic Zone, Chile. Lithos 296: 233-244.

Wicks, C.; De la Llera, J.C.; Lara, L.E.; Lowenstern, J. 2011. The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. Nature 478 (7369): 374-377.

Wilson, T.M.; Cole, J.W.; Stewart, C.; Johnston, D.M. 2011. Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bulletin of Volcanology 73: 223-239. doi:

Winslow H.; Ruprecht P.; Gonnermann, H.M.; Phelps, P.R.; Muñoz-Sáez, C.; Delgado, F.; Pritchard, M.; Amigo, Á. 2022. Insights for crystal mush storage utilizing mafic enclaves from the 2011-12 Cordón Caulle eruption. Scientific Reports 12: 9734. doi:

Witsil, A.J.; Johnson, J.B. 2020.Volcano video data characterized and classified using computer vision and machine learning algorithms. Geoscience Frontiers 11 (5): 1789-1803.

Wrage, J.; Tardani, D.; Reich, M.; Daniele, L.; Arancibia, G.; Cembrano, J.; Sánchez-Alfaro, P.; Morata, D.; Pérez-Moreno, R. 2017. Geochemistry of thermal waters in the Southern Volcanic Zone, Chile-Implications for structural controls on geothermal fluid composition. Chemical Geology 466: 545-561.

Zajacz, Z.; Halter, W. 2009. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth Planetary Science Letters 282: 115-121.


Supplementary materials