Tracing hotspot traces in the Andes
Abstract
The importance of such hotspot traces in contributing to low-angle subduction beneath the Andes is strengthened by updated South American-Nazca plate reconstructions, including three oceanic hotspot traces, in comparison with a new isotopic date compilation of igneous rocks from the mountain range. The Juan Fernández hotspot trace, reconstructed from Pacific-hotspot models to the Nazca-Farallon plate, encountered the subduction zone offshore southern Peru ~65 Ma, broadening arc volcanism to the east; the trace-trench intersection migrated gradually and then rapidly southward, widening the arc east to Bolivia and northern Argentina; it then stabilized about 13 Ma offshore central Chile, producing the contemporary low-angle Pampean segment. The Juan Fernández hotspot may also have been responsible for formation of the Manihiki Plateau on the Pacific plate much earlier, ~125 Ma. The Easter-Nazca hotspot trace intersected the subduction zone beneath Colombia before ~50 Ma and migrated southward beneath Ecuador beginning ~15 Ma, with progressive low-angle subduction implied by migrating volcanic cessation along the Andean crest to southern Peru. The Galápagos-Carnegie hotspot trace only recently encountered the subduction zone, apparently inducing a new low-angle segment and cessation of magmatism in Colombia. The reconstructions and magmatic history provided here strongly support a previously proposed genetic relationship of hotspot traces and low-angle subduction. Additionally, the reconstructions suggest remnants of older subducted traces in the asthenosphere may have sourced post-rift magmatism in eastern Brazil and Paraguay, which cannot be explained otherwise by simple hotspot mechanisms.