Special Issue dedicated to Francisco Hervé: Global tectonic processes of the ancient southwestern Gondwana margin in South America and the Antarctic Peninsula
Edited by:
- Mauricio Calderón, PhD, Universidad del Desarrollo, Chile
- Paula Castillo, PhD, Universität Münster, Deutschland
- Robert Pankhurst, PhD ScD, United Kingdom
Submission status: Extended until September 30, 2025
Special Issue: Geoethics in Chile and Latin America - Contextual reflections for responsible geoscience
Edited by:
- Luisa Pinto, Universidad de Chile
- Hernán Bobadilla, Politecnico di Milano
- Tania Villaseñor, Pontificia Universidad Católica de Chile
- Pablo Ramírez, Universidad de Chile
- Millarca Valenzuela, Universidad Católica del Norte
Submission status: Open between August 15, 2025, and March 31, 2026
Internal framework and geochemistry of the Carboniferous Huaco granite pluton, Sierra de Velasco, NW Argentina
Fernando G. Sardi, Pablo Grosse, Mamoru Murata, Rafael Pablo Lozano Fernández
Abstract
The A-type Huaco granite pluton of the Velasco range (Sierras Pampeanas of northwest Argentina) is formed by three coeval granitic facies and contains subordinate coeval-to-late facies, as well as enclaves, dikes and stocks that show different temporal relations, textures and compositions. The dominant facies (Regional Porphyritic Granite; RPG) is a porphyritic two-mica monzo- to syenogranite, with abundant microcline megacrysts up to 12 cm in size. It was emplaced in a dominant extensional setting and has a mainly crustal source but with participation of a mantle-derived component. The RPG transitions towards two coeval and co-genetic granite facies, at its margins (Border Granite; BG) and around Be-pegmatites (Adjacent Porphyritic Granite; APG). These two facies have a finer-grained texture and smaller and less abundant megacrysts. They are also monzo- to syenogranites, but a slight decrease in the biotite/muscovite ratio is observed from the BG to the RPG to the APG. Trace element modeling suggests that the RPG, BG and APG differentiated from the same magma source by fractional crystallization. Temporally older mafic (ME) and felsic (FE) enclaves are common in the pluton. The ME can be considered partially assimilated remnants of a mafic component in the genesis of the RPG, whereas the FE seem to be remnants of premature aplites. Other subordinate rocks intrude the RPG and are, hence, temporally younger: felsic dikes (FD), dioritic dikes (DD) and equiganular granites (EqG) are clearly posterior, whereas coeval-to-late Be-pegmatites (BeP) and orbicular granites (OG) formed during the final stages of crystallization of the pluton. The BeP, OG and FD indicate the presence of abundant water and volatiles. The EqG form small stocks that intrude the RPG and were possibly originated from purely crustal sources. The DD probably correspond to a younger unrelated episode of mafic magmatism.
Keywords
Granitic facies; REE and LIL composition; Fractional crystallization model; Huaco granite; Velasco range; Sierras Pampeanas