Special Issue dedicated to Francisco Hervé: Global tectonic processes of the ancient southwestern Gondwana margin in South America and the Antarctic Peninsula
Edited by:
- Mauricio Calderón, PhD, Universidad del Desarrollo, Chile
- Paula Castillo, PhD, Universität Münster, Deutschland
- Robert Pankhurst, PhD ScD, United Kingdom
Submission status: Extended until September 30, 2025
Special Issue: Geoethics in Chile and Latin America - Contextual reflections for responsible geoscience
Edited by:
- Luisa Pinto, Universidad de Chile
- Hernán Bobadilla, Politecnico di Milano
- Tania Villaseñor, Pontificia Universidad Católica de Chile
- Pablo Ramírez, Universidad de Chile
- Millarca Valenzuela, Universidad Católica del Norte
Submission status: Open between August 15, 2025, and March 31, 2026
Facultad de Ingeniería, Geología, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.
Centro de Investigación Marina Quintay, Universidad Andrés Bello, camino a ballenera s/n, Quintay, Chile. Chile
Jenny M. Blamey
Bioscience Foundation, José Domingo Cañas 2280, Santiago, Chile. Chile
Oliver Huhn
University of Bremen, Institut für Umweltphysik, Otto-Hahn-Allee, 28359 Bremen, Germany. Germany
Christine Provost
Université Pierre et Marie Curie, LOCEAN, Institut Pierre Simon Laplace, Boîte 100-4, place Jussieu 75252 Cedex 05, Paris, France. France
Is there an active hydrothermal flux from the Orca seamount in the Bransfield Strait, Antarctica?
Cristian Rodrigo, Jenny M. Blamey, Oliver Huhn, Christine Provost
Abstract
The rifting zone of Bransfield Strait, Antarctica, is tectonically and geologically unique. It is a back-arc basin that was opened by extensional forces associated to roll-back subduction after cessation of spreading activity of the Phoenix Ridge, and the transtension of the westward ending of Scotia-Antarctica Plate boundary. The Bransfield Rift/Ridge is still active generating volcanism or magma rise to force hydrothermal activity. During the ANT-XXV/4 cruise onboard R/V “Polarstern”, standard CTD and beam transmission measurements were done to determine temperature anomaly and turbidity. Water sampling was performed to determine δ3He and to find thermophilic microorganisms to examine the Orca seamount hydrothermal activity. A temperature anomaly of ~0.08 °C, a pick of turbidity, and high value of δ3He (>10%) were found inside Orca seamount. Results are consistent with a hydrothermal flux coming from the seamount. The report of the first observation of thermophilic and hyperthermophilic microorganisms in cold deep Antarctic waters is part of this study. Inside Orca seamount these microorganisms were found at three different depth levels close to the bottom. We suggest that the fluid migration from the volcano resulted from recent magmatic activity and provided the required elemental nutrients for microbial growth. Besides some thermophiles were found outside the seamount in a small quantity close to the seafloor. These would probably be related to subsidiary structures of the Orca seamount, or were transported by currents from other active volcanic sites as Deception Island. The finding of these thermophilic and hyperthermophilic microorganisms raise questions about the dispersal and their resistance in these extreme environments.