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Early Ordovician Aguada de la Perdiz Formation, northern Chile — Stratigraphy,

provenance and regional tectonic setting
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Abstract

The Early Ordovician Aguada de la Perdiz Formation of northern‘Chile is one of the
oldest unmetamorphosed sedimentary units in Chile. Graptolites indicate a late Floian
to early Dapingian age of theformation at'the Aguada de la Perdiz type locality and
small nearby outcrops in_Chile. Carrelative outcrops on the Argentinian side occur at
Huaitiquina, Filo Pircas, Sierra de Guayaos and Lever Mucar. Graptolites are
associated with scarce occurrences of brachiopods and conodonts in some outcrops.
In the Argentinian Puna the correlative units were assigned to the Coquena Formation.
All outerops consist mainly of wolcaniclastic turbidite and ash-rich flow deposits with
intercalations of bimodal lavas, volcanic breccias and reworked felsic tuffs. The
lithological assemblage reflects deposition in a marine volcaniclastic apron located on
the eastern flank of the Famatinian magmatic arc. We propose to collectively group all
respective outcrops in the Aguada de la Perdiz Formation thus respecting precedence
of its first definition by Garcia et al. (1962) because of the common characteristics of
the formation on both sides of the international border. New U-Pb detrital zircon ages
of a sample (n=124) from the Huaitiquina locality range between 3530 and 550 Ma and

reflect a common polycyclic provenance from older Amazonian sources. The youngest
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U—Pb zircon age corresponds to the Ediacaran and predates the biostratigraphically
defined depositional age by ca. 80 Myr. Thus, the synsedimentary Famatinian felsic
volcanism, otherwise common in coeval units, is not reflected in the detrital zircon age
record at Huaitiquina. The absence of Famatinian ages may indicate that_sediment
delivery from the Famatinian arc line source bypassed this site and that erosion of the
arc had locally dissected the volcanic edifices and had progressed to access the pre-

Pampean Neoproterozoic arc basement.

Resumen

La Formacion Aguada de la Perdiz (Ordovicico Temprano), norte de Chile —
Estratigrafia, proveniencia y marco tecténico regional. La Formacion Aguada de
la Perdiz, del Ordovicico Temprano en el norte de Chile; constituye una de las
unidades sedimentarias no metamorficas' mas antiguas del pais. La presencia de
graptolitos indica una edad comprendida entre el Floiano tardio y el Dapingiano
temprano en la localidad tipo de Aguada.de la Perdiz y en pequefios afloramientos
préximos en territorio chileno. Afloramientos correlativos en el sector argentino se
encuentran en Huaitiquina, Filo Pircas, Sierra de Guayaos y Lever Mucar. En algunos
de estos afloramientos, los graptolitos se asocian a registros escasos de braquiépodos
y conodontes. En la Puna argentina, las unidades correlativas han sido asignadas a
la Formacion Coquena. Todos los afloramientos estan constituidos principalmente por
turbiditas volcanoclasticas y depdsitos de flujo ricos en ceniza, intercalados con lavas
bimodales, brechas volcanicas y tobas félsicas retrabajadas. Este conjunto litolégico
refleja la depositacion en un abanico submarino volcanoclastico emplazado en el
flanco oriental del arco magmatico famatiniano. Se propone agrupar colectivamente
todos los afloramientos correspondientes bajo la denominacion de Formacion Aguada

de la Perdiz, respetando la precedencia de su definicién original por Garcia et al.
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(1962), en virtud de las caracteristicas comunes que la unidad presenta a ambos lados
de la frontera internacional. Nuevas dataciones U—Pb en circones detriticos de una
muestra (n=124) proveniente de la localidad de Huaitiquina registran edades
comprendidas entre 3530 y 550 Ma, lo que refleja una procedencia policiclica comun
a partir de fuentes amazonicas mas antiguas. La edad U-Pb mas joven/corresponde
al Ediacarico y antecede en aproximadamente 80 millones de afios a la edad de
depositacion definida mediante bioestratigrafia. De este modo, el vulcanismo félsico
famatiniano sinsedimentario, comun en unidades coetaneas, no se encuentra
representado en el registro de circones detriticos de Huaitiquina. La ausencia de
edades famatinianas podria indicar que el aporte sedimentario procedente del arco
famatiniano no alcanz6 este sector, y que la erosion del arco, habia disectado
localmente los edificios volcanicos, permitiendo . el .acceso al basamento

neoproterozoico pre-pampeano.

1. Introduction

The Late Cambrian to Silurian/Early Devonian accretionary Famatinian orogenic cycle
(520-410 Ma) is the second cycle of the Terra Australis Orogen, the evolution of which
started at.ca. 650 Ma (Cawood, 2005). The Famatinian orogenic cycle is recorded
along the present western margin of South America from ~36°S to the Mérida Andes
of northern Venezuela at ~10°N. It is characterized along its entire length by major
intrusive bodies formed in calc-alkaline magmatic arcs between 490 and 460 Ma
(Rapela‘etal., 1990, 1998a, 2018; Pankhurst et al., 1998; Weinberg et al., 2018; see
review in Ramos, 2018) (Fig. 1). Rocks metamorphosed at variable depths are
abundant and outline a strong tectonic segmentation into exposures of different crustal
levels (e.g., Willner et al., 1987; Otamendi et al., 2008; Ramos, 2018; Alasino et al.,

2024). Unmetamorphosed or only slightly metamorphosed volcanic rocks are relatively
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scarce and occur only in those segments where upper crustal levels are exposed.
These include relatively widespread occurrences in the Sierra de Famatina (e.g.,
Armas et al., 2018, 2021; Cisterna and Coira, 2022) and in the Puna of northern Chile
and northwestern Argentina (e.g., Schwab, 1973; Breitkreuz, 1986; Coira and Barber,
1989; Coira and Nullo, 1989; Bahlburg, 1990, 1998; Coira et al., 2009a,b) (Fig. 1)
Isolated occurrences are in the Cordillera Oriental of southern and central Peru
(Haeberlin and Fontbote, 2002; Bahlburg et al., 2006, 2041) and in the northern

Venezuelan Andes (Ramos, 2018).

In this contribution we discuss the main upper crustal non-metamorphic occurrences
of volcaniclastic successions in the Puna de Antofagasta of northern Chile and the
northern Puna of northwestern Argentina. (Figs.. 1. and<2). They straddle the
international border which impeded cross-border considerations and correlations. We
present new detrital zircon U-Pb age‘data on a sample from the Huaitiquina outcrop
on the Argentinian side. We consider the new detrital zircon age data jointly with similar
data from the broadly coeval Complejo igneo-Sedimentario del Cordén de Lila (CISL;
Niemeyer, 1989) (Fig. 1) in the Salar de Atacama basin to the west in order to clarify

the regional implications of the.new data for their host formations.

2. Stratigraphic framework of Ordovician units in the Puna of northern Chile and
northwestern Argentina.

The Aguada de la Perdiz Formation was the first recognized stratigraphic unit of
Ordovician age in Chile and is located in the Puna de Antofagasta of northern Chile.
Together with the Early Ordovician sedimentary rocks of the CISL (Figs. 1 and 3) it is
the oldest unmetamorphosed sedimentary unit on continental Chilean territory. Its base

and top are unseen. The formation was first described and named by Garcia et al.
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(1962) and was assigned to the Lower Ordovician Arenig Series (now Floian-
Dapingian; Fig. 3) on the basis of graptolite finds. Additional graptolite fauna found at
related outcrops in the vicinity (Poquis, Lever Mucar; Figs. 1 and 2a) led Pérez (1983)
to group all these occurrences in the Aguada de la Perdiz Formation™ with»a
corresponding age range encompassing the Arenig and Llanvirn (now Floian to

Darriwilian; Fig. 3; Table 1).

On the Argentinian side it was Schwab (1973) who first found upper Arenig (now
Dapingian; Fig. 3; Table 1) graptolites at Filo Pircasdn a succession of greywackes and
shales with diabase intercalations (Figs. 1 and 2). He was‘the first who in this context
suspected a volcanic origin also for the cherts (‘pedernal’; Garcia'et al., 1962) of the
upper Aguada de la Perdiz Formation and correlated his graptolite finds with those on
the Chilean side. This was later substantiated with correlative finds in volcaniclastic
strata in the Sierra de Guayaos near Catua (Acefiolaza and Durand, 1974; Coira et al.,
1987) (Figs. 1 and«2A; Table 1) and, together with conodonts of the same age, at
Huaitiquina (Monteres et al., 1996; Toro et al., 2019, 2020) (Table 1). Following
Schwab (1973), the respective rocks on the Argentinian side were assigned to the
Coquena Formation of Dapingian to Darriwilian age (e.g., Monteros et al., 1996; Toro
et al., 2019, 2020) (Fig. 3; Table 1). Ordovician brachiopods confirming the age
assignments indicated by the graptolites were found in similar rocks at several localities
south of the study area (e.g., Benedetto, 2001, 2003). Bahlburg et al. (1990) presented
additional graptolite data, further constraining the stratigraphic relationships between
the Aguada de la Perdiz Formation and equivalents and the partly coeval and younger

Ordovician turbidite units farther east in the Argentinian Puna (Figs. 1 and 3).
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Until recently, the Ordovician stratigraphic schemes of the Chilean and Argentinian
Puna were kept almost completely separate. It was noted that the lower Coquena
Formation (Fig. 3) contained volcanic and volcaniclastic rocks which were broadly
coeval with the Aguada de la Perdiz Formation directly on the other side of the border
in Chile (Schwab, 1973) but the schemes were not unified. To simplify matters;
Bahlburg et al. (1990) combined all of the volcanic and volcaniclastic units‘of Floian to
Darriwilian age of the Chilean and Argentinian Puna under the informal name
Volcanosedimentary Successions of the Puna, for which we now_suggest the name
Aguada de la Perdiz Formation because it has precedence. As the respective volcanic
record had, however, started already in the' Tremadocian Las Vicufias Formation
(Moya et al., 1993), we combine here all Lower and Middle Ordavician volcanic and
volcaniclastic units in the Puna Volecanic Complex, including.the redefined Aguada de

la Perdiz Formation (Fig. 3).

3. The original Aguada de la Perdiz Formation

Fuenzalida (1957) was the first to report the presence of Ordovician sedimentary rocks
in the Puna of Antofagasta of northern Chile bearing the graptolite Didymograptus
sagitticaulis at the Lever Mucar locality (Fig. 1; Table 1). The Aguada de la Perdiz
Formation (Figs. 1-3) was established by Garcia et al. (1962) who described a ~2000
m_thick siliciclastic succession divided into two parts, a lower member of quartz-rich
sandstones yielding the graptolites Didymograptus sp., Tetragraptus quadribrachiatus
and Tefragraptus approximatus, and an upper member consisting mainly of cherts
(‘pedernal’; Fig. 3; Table 1). The formation is exposed at altitudes of 4400-4600 m
a.s.l. at the eastern margin of the volcanoes of the Cordillera Occidental (Figs. 1 and
2). Marinovic (1979) and Pérez and Davidson (1982) added finds of Glossograptus sp.

and Isograptus sp., among others (Table 1), at the isolated Poquis locality north of
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Aguada de la Perdiz (Fig. 1) and recognized the sedimentary rocks as a succession of
turbidites. The summary of available graptolite data by Pérez (1983) was extended by
Breitkreuz (1986) who reported a rather diverse graptolite fauna including
Didymograptus bifidus (Table 1) which helped to place the Aguada de la Perdizoutcrop
in the mid-Floian bifidus zone of the Lower Ordovician (Table 1). The combination of
biostratigraphic data from the Chilean Aguada de la Perdiz, Poquis and Lever Mucar
localities indicates a stratigraphic range of the Early and Middle Ordovician unitsfrom

the mid-Floian into the Darriwilian (Arenig-Llanvirn of the British Series; Fig. 3, Table

1).

3.1 Depositional facies

Breitkreuz (1986) was the first to_observe the volcanic nature of the Aguada de la
Perdiz Formation at its type docality (Figs:t 1, 2, 4, and 5A). He upheld the original
division of the formation by Garcia et@al. (1962) into two members (Fig. 4). The lower
coarse-grained member consists of a ~1500 m thick succession of red to multi-colored
(Figs. 4 and 5B) volcaniclastic strata including felsic volcaniclastic debris flow deposits
(Fig. 5B-D). It is overlain by the ~1200 m thick upper member of silicified, fine-grained
and thin-bedded tuffs, reworked tuffs and mass flow deposits with colors ranging from

greyish-black to brownish-yellow (Figs. 4, 5A, and 5E).

As summarized from Breitkreuz (1986) and Breitkreuz et al. (1989), the coarse-grained
volcaniclastic rocks of the lower member consist of sandy-conglomeratic beds up to
one meter thick, interspersed with thin, fine-sandy to pelitic, locally fossiliferous layers
(Fig. 2B). Thick monomict and polymict breccia tuffs, reaching up to 15 m, are
occasionally intercalated (Fig. 5B, C). The sandy-conglomeratic beds maintain a

consistent lateral thickness and exhibit normal and coarse-tail grading (Fig. 5B).
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According to Breitkeuz (1986) and Breitkreuz et al. (1989) volcaniclastic sandstones
display compaction structures including pressure solution and crystal deformation
parallel to bedding planes alongside partial carbonate replacement. The matrix
consists of fine-grained chert, with former glass shard outlines visible under the
microscope in unpolarized light. The framework components, in “decreasing
abundance, include resorption-embayed quartz, sanidine, variably sericitized
andesine/labradorite, devitrified pumice fragments. Fibrous cherts; and accessory
minerals such as biotite (partly chloritized), opaques, and zircon complete the picture.

Non-volcanic quartzite rock fragments occur in the conglomerates.

Breccia tuffs are intercalated in the lower member. They either consist of rhyolitic
components including non-graded ash layers, or siliceous tuff clasts, reaching up to
one meter in size, along with plastically deformed, laminated tuff rafts suspended in a
trachytic tuff groundmass (Fig. 5C). Component size decreases rapidly toward the top

of the breccia tuffs.

The composition of the breccia matrix includes basaltic hydroclastic fragments with
vesicles and perlitic cracks suggesting proximal subaquatic magmatic activity. They
occur jointly with aphanitic to intersertal volcanic fragments and siliceous tuff clasts
compositionally similar to the larger breccia components. Similar sedimentary bodies
have been described by White and Busby-Spera (1987) as deposits of 'short-distance,

weakly turbulent, high-concentration sediment flows.'

The coarse-grained volcaniclastic deposits of the lower section of the formation lack

evidence of a hot regime of transport and sedimentation including the absence of any
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indication of welding and fusion of particles. The succession is best characterized as
a thick stack of volcaniclastic turbidity current and debris flow deposits (Cas and

Wright, 1987).

The transition from the lower coarse-grained to the upper fine-grained member _is
marked by a ~10 m thick fining- and thinning-upward sequence. The upper member
consists of 20-50 cm thick tuffs and reworked tuffs, the latter characterized by.fine
cross beds, parallel and convolute lamination, and cut-and-fill structures deposited
from ash-bearing flows (White and Busby-Spera, 1987) (Figs. 4 and 5E). Less silicified,
thinly bedded siltstone and claystone intercalations locally contain graptolites and

phyllocarids (Breitkreuz, 1986).

Thin-section analysis of the tuffs reveals a fine-grained, devitrified groundmass with
remnants of former glass shards. Small amounts of quartz, feldspar, biotite, and chert
fragments are arranged in layers within this matrix. Patchy carbonatization is also

observed in some areas.

A few meter-thick mafic lavas occur in the formation. In the lower member they consist
of aphanitic to intersertal-textured rocks, primarily composed of variably altered
plagioclase and augite. The mafic lava in the upper part of the fine-grained section is
an altered basalt containing chalcedony- and carbonate-filled amygdales, along with

some feldspar phenocrysts.

3.2 Depositional environment

The depositional environment is interpreted as marine because of the presence of

graptolite-bearing strata (Pérez, 1983; Breitkreuz, 1986; Monteros et al., 1996). The
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preservation and abundance of turbidites indicates that the depositional site was below
storm wave base and at the base of some considerable relief conducive to the

formation of turbidity currents and debris flows.

The characteristics of lithology and facies suggest that the Aguada de la Perdiz
Formation represents a submarine volcaniclastic apron (White and Busby-Spera,
1987) of a mid-Floian (FI3; Table 1) possibly subaerial® chain of bimodal, but
predominantly felsic volcanoes (Breitkreuz, 1986; Bahlburg, 1990)«Periodically, this
apron experienced subaqueous lava extrusions .indicating activity of nearby mafic
vents. While sporadic proximal felsic volcanic activity is_indicated by a few massive
rhyolitic breccia tuffs, the dominance of turbidity, current over debris flow deposits
suggests that the formation developed distally from the primary source of volcanic
debris. The extent to which air fall contributed to the deposition of the volcaniclastic
strata is unknown. Low-density ‘turbidity currents and/or dilute, slow-moving ash-
bearing flows were’ responsible for forming submarine, rhythmic, fine-grained tuff
successions typical of the upper member of the Aguada de la Perdiz Formation (Figs.

4, 5A, and 5E).

4. Correlative units in the neighbouring Puna of northwestern Argentina

4.1 Huaitiquina

The Aguada de la Perdiz Formation at the Huaitiquina locality (Figs. 1 and 2) is
exposed at altitudes of 4200-4400 m a.s.l. The base of the section is formed by the
westernmost NNW-SSE striking anticline in the eastern part of the outcrop area. Along
a fault in the Rio Huaitiquina valley there is a repetition of strata, which is accounted

for in figure 4. The top of the section is covered by Cenozoic rocks.
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Schwab (1973) characterized the strata of the Rio Huaitiquina area as conglomeratic
greywackes with intercalations of diabasic lavas and tuffs. Méndez et al. (1979)
documented a 920 m thick section of intercalated clastic rocks and andesites which
presumably represent the lower part of the exposed section (Figs. 4 and 6A). Coira
and Barber (1987) divided the succession into five parts which, in their interpretation;
mirror the evolution from andesitic to explosive siliceous and submarine arc volcanism,
the latter of which is succeeded by epiclastic sedimentary rocks (Fig. 6B).«The

described section is 1100 m thick.

In detail the complete section begins with a ~500 m thick sequence of strongly jointed
subaqueous vesicular basalt, basaltic andesite and andesite lavas and associated
hydroclastic breccias (Fig. 6C, D)..They are intercalated with mostly coarse-grained
monomict mafic debris flow deposits with minor grading at the top and are overlain by
polymict and felsic partly_brecciated<debris flow deposits (Fig. 6E) some of which
contain rafts of deformed laminated siliceous tuffs up to one meter in diameter similar
to the ones found at.the Aguada de la Perdiz locality (cf. Fig. 5D). These give way to
coarse and fine-grained volcaniclastic turbidites (Fig. 6F). Well sorted sandstones with
2-3 cm high symmetric wave ripples are intercalated at the top of this lower volcanic

section (Figs. 4 and 6G).

The middle and upper part of the ~3300 m thick succession consists of volcaniclastic
fine- to coarse-grained and partly graded sandy turbidites. Further basalt lavas are
intercalated occasionally in the upper section and up to 40 m thick packages of 20-50
cm thick siliceous, laminated tuffs are common (cf. Fig. 5E). Some of the tuffs have a
weakly erosive base. Massive and graded sandstones and pebbly sandstones are

deposits from turbidity currents.
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4.2 Filo Pircas

The 660 m thick Filo Pircas section (FP; Figs. 1, 2, and 4) is exposed at an altitude of
4200-4400 m a.s.l, between a syncline in the west and an anticline in.the east
(Bahlburg, 1990). 3—20 m thick successions of fine-grained and thin-bedded (10-50
cm) volcaniclastic turbidites (Fig. 5F, H) alternate with 5-20 m thick successions of thin
(5—15 cm) laminated tuffs which frequently have an erosional base (Fig. 5Gy H).

Thickness and abundance of the tuffs decrease up section.

The outcrop at Lever Mucar (Fig. 1) represents an along-strike continuation of the Filo

Pircas section and appears to contain more epiclastic sandstones and shales in the

northern reaches of the outcrop (Coira and Nullo, 1989).

4.3 Nature of magmatism.in the Aguada de la Perdiz Formation

Mafic volcanic arc lavas are most abundant in the lower member of the Aguada de la
Perdiz Formation and give way to more felsic volcanism up-section (Schwab, 1973;
Breitkreuz et al., 1989; Coira and Barber, 1989; Bahlburg, 1990) (Fig. 4). The
geochemical characteristics identify both mafic and felsic volcanic rocks as calc-
alkaline and related to the activity of the Ordovician Famatinian volcanic arc (Faja
Eruptiva de la Puna Occidental; Palma et al. 1986) above an east-dipping subduction
zone (present coordinates) along the evolving Famatinian accretionary orogen (Coira
et al., 1982, 1999, 2009b; Coira and Barber, 1987, 1989; Breitkreuz et al., 1989;

Bahlburg, 1990, 1998; Niemeyer et al., 2018; Ramos, 2018).

4.4 Depositional facies of the Huaitiquina and Filo Pircas localities and biostratigraphic

correlation to the Aquada de la Perdiz locality
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Submarine basalts and andesites and associated debris flow deposits characterize the
lower 500 m of the Huaitiquina section. This mafic magmatism is associated with felsic
tuffs which occur as extensive layers or reworked as rafts in the debris flow deposits.
Lithologically related tuffs which lack the erosive base may have been connected to
submarine effusions and may have been deposited from suspension (White and
Busby-Spera, 1987). Similar to the Aguada de la Perdiz Formation at the type locality,
the partly cross-bedded tuffs are interpreted to have a subaerial origin and were

subsequently deposited in a marine environment by dilute slow-moving ash-rich flows.

Coira and Barber (1987) found thin stromatolites in the lower part of their section in the
Huaitiquina area. The combination of (i) the stromatolites, (ii) waverippled sandstones,
and (iii) the sparse graptolite and conodont fauna (Monteros‘et al., 1996; Toro et al.,
2020) (Table 1) indicates shallow marine conditions during deposition of the lower part
of the Huaitiquina section. Volcaniclastic turbidites dominate up-section and point to
an increase in water depth and subsidence of the marine depositional site through

time.

The deposits of the Filo Pircas section document the increasing abundance up-section
of volcaniclastic, predominantly fine sand turbidites and ash-rich flow deposits
commonly with-an erosional base (Fig. 4; Table 1). The Filo Pircas section is rather
similar.to the upper member of the Aguada de la Perdiz Formation at the type locality
and may be a biostratigraphic equivalent to this member in the late Floian and lower
Dapingian (Fig. 4; Table 1). It may also represent an equivalent of the finer grained

upper part of the Huaitiquina section (Fig. 4; Table 1).
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Overall, the depositional environment of the Aguada de la Perdiz Formation is that of
a volcaniclastic apron connected to the bi-modal Famatinian volcanic arc source. The
arc was located to the west between the discussed outcrops and the CISL in the Salar
de Atacama basin. The volcaniclastic Aguada de la Perdiz Formation formed on the
back-arc flank (Breitkreuz, 1986; Palma et al., 1986; Bahlburg, 1990; Niemeyer et al;
2018) (Fig. 1). The facies differences between the Aguada de la Perdiz and Huaitiquina
localities are likely due to a variable local input along the Famatinian magmatic.arc

source.

East of the discussed outcrops, at Filo Tropapete (Schwab, 1973) (Fig. 1), the strata
of the Aguada de la Perdiz Formation pass gradually into the turbidite successions of
the Lower Turbidite System (Coquena Formation; Schwab, 1973; Bahlburg, 1990) (Fig.
3). The Huaitiquina site records a marked deepening from shallow water depth with
stromatolites to deeper subtidal depths at rates of up to 1100 m/Myr (Bahlburg, 1990),
allowing the deposition of thick successions of turbidites. In view also of the
accumulation of the Puna Turbidite Complex (Fig. 3) east of the Aguada de la Perdiz

Formation, a deepening of the basin in eastward direction is inferred (Bahlburg, 1990).

The lithological. development of the Filo Pircas section and the Filo Tropapete, and by
correlation also of the upper sections at Aguada de la Perdiz and Huaitiquina, is
interpreted to be the result of the waning of volcanic activity and the erosion of the
volcanic edifices farther west during the upper Dapingian and the lower Darriwilian

(Bahlburg, 1990) (Fig. 3).

5. New detrital zircon U-Pb ages of the Aguada de la Perdiz Formation
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Einhorn et al. (2015) presented a few reliable detrital zircon ages (n=9) obtained from
a detrital sedimentary sample of the Aguada de la Perdiz Formation at its type locality.
These ages range from ca. 476 to 465 Ma and include a youngest population with a
weighted mean age of 465 + 4 Ma (lower Darriwilian; n=5) and a youngest zircon age
of 453 + 12 Ma. Both are commensurate with the lower Darriwilian biostratigraphic age
of the formation. In order to further constrain and broaden the age and provenance
information on the Aguada de la Perdiz Formation we dated.detrital zircon in a single

sandstone sample (HY19) from the Huaitiquina locality.

5.1 Methods

Zircons were analysed for U-Pb geochronology.by LA-ICP-MS<at the Institute for
Mineralogy at the University of Munster using a ThermoFisher Element2 mass
spectrometer coupled to a Photon Machines Analyte G2 Excimer laser. The specific
procedural details are reported in‘a large number of studies including Kooijman et al.

(2012) and Bahlburg et al. (2016, 2020).

The zircons consist predominantly of euhedral, elongate or short prismatic as well as
subrounded to rounded “grains usually less than 150 pm in length. The
cathodoluminescence images show oscillatory or sector zoning interpreted as of
magmatic origin; unzoned grains or those with irregular and round zoning are
considered to be of metamorphic origin (Vavra et al., 1999). Zircon rims were

preferentially analyzed to date the last growth stage of each zircon.

We uniformly apply a concordance filter of 90 and 101% to all our data (see
Supplementary Table 1) with 124 U-Pb ages fulfilling this criterion. 120 age dates have

errors between 1 and 5 %, averaging 2.3 %. For zircons older than 1.5 Ga the
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207Pp/296Pp ages are used and for those younger the 2%Pb/238U ages are preferred.
We follow Spencer et al. (2016) who evaluated the error dimensions of 38,000
published zircon ages and recommended the crossover point from 207Pb/2%Pp ages to
206pp/238 ages be placed at 1.5 Ga. Kernel Density Estimates (KDE) were calculated

with the provenance software package (Vermeesch et al., 2016).

5.2 Results

The detrital zircon U-Pb ages of sample HY 19 from the middle part.of the Huaitiquina
section (Fig. 4) range between 3529+31 Ma and 5529 Ma (Supplementary/Table 1).
Major abundance maxima are at ca. 1550, 1480, and 1060 Ma, with-minor ones at ca.
1760 and 650 Ma (Fig. 7). Multiple studies have demonstrated.an Amazonian and
proto-Andean origin of the detritus constituting the (Early) Paleozoic sedimentary rocks
of the Andean region (e.g., Willner et al.,2008; Bahlburg et al., 2009, 2011, 2025;
Augustsson et al., 2015; Einhorn et‘al., 2015; Pankhurst et al., 2016). The listed
maxima can be apportioned to the major.orogenic and tectonic cycles reflecting the
crustal evolution of, Amazoenia since the beginning of the Paleoproterozoic with
individual zircon ages extending back to the Paleoarchean (e.g., Cawood, 2005;

Cordani and Teixeira, 2007; Pepper et al., 2016; Bahlburg et al., 2025) (Fig. 7).

In_decreasing order.of abundance, the Huaitiquina sample (Fig. 7) includes 27 % of
grains.linking back to the Rondonia-San Ignacio orogenic cycle (1550-1200 Ma), 26
%.to the Sunsas cycle (1200-1000 Ma), 21 % to the Rio Negro-Juruena cycle (1800-
1550 Ma), 9 % to the phase of Neoproterozoic rifting connected to the breakup of
Rodinia (1000-650 Ma; Cawood et al., 2016; Bahlburg et al., 2020), 6 % to the Central
Amazonian Province (>2300 Ma), 5 % to the Ventuari-Tapajos cycle (2000-1800 Ma),

and 3 % each to the Maroni-Iltacaiunas (2300-2000 Ma) and the Olmos-Pampean
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cycles (650-520 Ma; Cordani and Teixeira, 2007; Bahlburg et al., 2025) (Fig. 7). There
are no syndepositional Ordovician detrital zircon ages. The age spectrum is thus

dominated by Paleo- and Mesoproterozoic ages recording the evolution of the Terra

Amazonica Orogen (Bahlburg et al., 2025) (Fig. 7).

The youngest age peak is represented by two grains giving an average mean age of
652 Ma (Fig. 7). The three youngest ages between 629 and®&52 Ma are from weakly
rounded subidiomorphic zircon grains (see Supplementary Figure«). The maximum
likelihood age of deposition calculated from the entire sample according to Vermeesch

(2021) is 565+18 Ma.

Surprisingly, at Huaitiquina there are no detrital  zircon ages reflecting the
synsedimentary volcanic activity recorded by the mafic and felsic volcanic rocks
intercalated in the Aguada.de la Perdiz Formation (see above; Coira and Barber, 1987,
1989; Breitkreuz etdal., 1989; Bahlburg, 1990, 1998; Coira et al., 1999, 2009b). The
Cryogenian—Ediacaran (Neoproterozoic) maximum likelihood age of deposition
(Vermeesch, 2021) of 565118 Ma derived from the detrital zircon age spectrum is older
by ca. 100 Myr than the actual Early Ordovician biostratigraphic age of deposition (Fig.

3; Table 1).

The detrital zircon U-Pb age spectrum of the Aguada de la Perdiz Formation at the
Huaitiquina location reflects the expected Precambrian Amazonian provenance found
in many studies throughout the Andes. In contrast, the absence of synmagmatic
Ordovician ages reflecting the syndepositional volcanic activity together with the
presence of Cryogenian—Ediacaran youngest ages is an unexpected result. The

youngest magmatic event recorded by the data from Huaitiquina is the alleged Olmos
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magmatic arc in eastern Peru active between 650 and 550 Ma (Chew et al., 2008;
Bahlburg et al., 2025) and before the onset of the Pampean orogenic cycle (540-520
Ma; Rapela et al., 1998a,b). However, the few detrital zircon U-Pb ages obtained from
the formation at the Aguada de la Perdiz location constrain the age of the.sampled
layer at 46514 Ma (lower Darriwilian; n=5; Einhorn et al., 2015). Similar ages are also
abundant farther west in the CISL (Figs. 1 and 7). This indicates that sediment routing
systems from the Famatinian magmatic arc in fact delivered Famatinian detritus to.the
considered formations. They appear, however, to have bypassed the Huaitquina

locality.

Detrital zircon age spectra of the Ediacaran—Early Cambrian siliciclastic Puncoviscana
Formation involved in the formation of the Pampean orogenic cycle in northwestern
Argentina (Ramacciotti et al.,.2025) show/age distributions similar to the Huaitiquina
sample. The detritus recorded in sample HY 19 could therefore have been derived from
reworking of the Puncoviscana rocks. However, both the position of the Aguada de la
Perdiz Formation on,the eastern flank of the Famatinian magmatic arc and the east-
directed paleocurrent and eastward deepening facies trends of the Ordovician basin in
the Puna of Argentina make a provenance from the Puncoviscana formation from

eastern side of the basin unlikely.

The coeval magmatism of the Faja Eruptiva de la Puna Oriental in the eastern Puna
and east of the Puna Volcanic Complex (Coira et al., 1999; Bahlburg et al., 2016;
Pankhurst et al., 2016) (Fig. 1) is also not registered at the Huaitiquina locality. This is
probably due to the deeper Early Ordovician basin between this magmatic zone and
the Aguada de la Perdiz Formation which may have captured the syndepositional

magmatic detritus derived from the east (Bahlburg, 1990).
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The data also indicate that the youngest detritus included in the Lower Ordovician
siliciclastic deposits at Huaitiquina predominantly reflects a potentially polycyclic
derivation from sources older by 100 to 200 Myr, having bypassed PampeansSources

of 540-520 Ma (Rapela et al., 1998a,b).

6. Discussion and Conclusions

The Puna Volcanic Complex is separated into two parts by the diachronous angular
Tumbaya unconformity (Moya, 2015) (Fig. 3). Units below this unconformity include
the Las Vicufias Formation north of the Salaridel Rincon(Moya et al., 1993) and the
CISL in northern Chile (Niemeyer, 1989) (Fig. 1), both belonging.to.the Tremadocian
(Fig. 3). The Aguada de la Perdiz_Formation was deposited<@bove the unconformity,
with an upper Floian to lower Darriwilian age. At the type locality this biostratigraphic

age coincides with very scarce detrital zircon age data between 475 and 465 Ma.

The Quebrada Grande Formation in the Cordén de Lila in northern Chile overlies the
CISL unconformity and has a Darriwilian biostratigraphic age based on brachiopods
and graptolites (Gonzalez et al., 2007) (Fig. 1; Table 1). However, the CISL and the
Quebrada Grande and Aguada de la Perdiz formations have very similar depositional
ages as defined by U-Pb zircon age data. The youngest age cluster obtained from the
CISL turbidites yielded a weighted mean age of 477+5 Ma with a youngest zircon age
of 475+11 Ma (Augustsson et al., 2015). Rhyolite and dacite lava intercalations gave
ages between 480 and 470 Ma (Zimmermann et al., 2010; Pankhurst et al., 2016).
Coeval intrusive activity is recorded in the Cordon de Lila between 485 and 471 Ma
(Pankhurst et al., 2016) (Fig. 1). The Quebrada Grande Formation equally includes

rhyolite and dacite lava flows dated at ca. 480, 477 and 470 Ma in its lower part
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(Zimmermann et al., 2010; Pankhurst et al., 2016) (Fig. 3). Pampean detrital zircon
ages are scarce here as well but those reflecting the Olmos magmatic arc between
650 and 550 Ma are abundant with a peak age at ca. 640 Ma (Augustsson et al., 2015).
Considering both the biostratigraphic and detrital zircon U-Pb ages of the Aguada de
la Perdiz Formation, the CISL and the Quebrada Grande Formation, the differences
between all three formations in physical stratigraphy and biostratigraphy can presently

not be reproduced or resolved by the available geochronological data.

The depositional environment accommodating thedvariable lithologies of the Aguada
de la Perdiz Formation can best be described‘as a volcaniclastic apron which formed
on the eastern flank of the Famatinian magmatic arc which in this region is also named
Faja Eruptiva de la Puna Occidental (Palma et al., 1986; Bahlburg, 1990; Coira et al.,

2009b).

The sandstones and greywackes of all formations constituting the Puna Volcanic
Complex are predominantly‘compositionally immature and uniformly rich in feldspar
and rock fragments. They have a rhyodacitic to rhyolitic upper crustal geochemical
composition similar to magmatic arcs (Bahlburg, 1998; Zimmermann and Bahlburg,
2003; Zimmermann et al., 2010; Zimmermann, unpublished data on the Las Vicufas

Formation).

There are notable differences between the detrital zircon U-Pb age spectra of the CISL
and the Aguada de la Perdiz Formation at the Huaitiquina locality. The distribution of
ages and their abundances in samples of both formations reflect an expected
Precambrian Amazonian provenance previously also obtained in many sandstone

studies throughout the Andes (e.g., Willner et al., 2008; Bahlburg et al., 2009, 2011,
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2025; Augustsson et al.,, 2015; Einhorn et al., 2015; Pankhurst et al., 2016). An
unexpected result is the absence of synmagmatic Ordovician ages and the presence
of Ediacaran youngest ages in the Huaitiquina sample (Figs. 3 and 7). The youngest
magmatic event recorded by the Huaitiquina data is the inferred Olmos magmatic arc
in eastern Peru active between 650 and 550 Ma (Chew et al., 2008; Bahlburg et al;
2025) and before the onset of the Pampean orogenic cycle (Rapela et al., 1998a,b).
Famatinian zircons are present at the Aguada de la Perdiz type locality (Einhorn et al.,
2015) but absent from the Huaitquina locality where Olmos-Pampean ages form the
youngest age population (Fig. 7). The variable age distributions indicate that erosion
in the region of the Famatinian arc source supplied detritus unevenly to the various
depositional sites and that it had locally dissected thewolcanic edifices to progressively

access the arc basement.
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841 Figure 1. Outcrop map.of Ordovician units in the Puna of northern Chile and
842 northwestern Argentina, and in the Salar de Atacama Basin of northern Chile (modified
843  from Bahlburg, 1990 and Augustsson et al., 2015). *sedimentary part.



45 dip angle
W~ photo interpr

a Perdiz Formation.

13 ) and Filo Pircas (FP)
otolineations of the Aguada de la Perdiz
pels indicate sampling localities,



852
853

854
855
856
857
858
859
860
861
862
863

| Cordi
. : . Cordillera
W Chile Puna : Oriental E
444 :
Hn
Eﬁ'§ 445 Ag Ocloyic tectonic phase
§ 3 Kt
=
< Sb
o 458 )
— [ - A e e e e By >
:S e g ow |l | 2 LTS Falda Ciénaga / 2
2|z . Coqug;]a i
g = g 467 Da o Qéemgda Aduada de ' -_ < % Santa Victoria
— 470 = e i Diablo Group
g Fl £ a rerdiz . :
S S| 478 ] Tolillar | Chiquero [F€=
53 N e T s
-1 3B T = o
o A CISL Las - Cobres
—1485 Ty Tolar Chico G
=| 2 489310 . , Viounas ? el
<| 9 Js !
ol 2 | 1P
Ma —— tectonic uneonfermity - depositional transition

Figure 3. Uppermost Cambrian and Ordovician stratigraphy and formations of the Puna
of northern Chile and northwestern Argentina (compiled and adapted from Schwab,
1973; Breitkreuz, 1986; Acenolaza and Baldis, 1987; Bahlburg et al., 1990; Moya et
al., 1993; Gonzalez et al., 2007; Brussa et al., 2008; Moya, 2015; Toro and Herrera
Sanchez, 2019; and<Maletz, pers. comm., 2022, 2025). ICS chronostratigraphy
according to Cohen et al. (2013, updated). Pb: Paibian; Js: Jiangshanian; ST10:
unnamed Stage10; Tr: Tremadocian; Fl: Floian; Da: Dapingian; Dw: Darriwilian; Sb:
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Figure 4. Schematic lithostratigraphic sections of the Aguada de la Perdiz Formation
at the type locality (AP), and at Huaitiquina (HY) and Filo Pircas (FP). AP redrawn and
modified from Breitkreuz (1986) and Bahlburg et al., (1990); HY redrawn and modified
from Bahlburg (1990) and Monteros et al. (1996); FP redrawn from Bahlburg et al.
(1990). The asterisk in HY 'marks the origin of detrital zircon sample HY19 shown in
Figure 7.
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Figure . Outcrop pictures of the Aguada de la Perdiz Formation at the type locality (A-
E) and at the Filo Pircas section (F-H). A. Outcrop overview with thin-bedded ash-
bearing flow deposits of the upper member in foreground and Cenozoic ignimbrite
coverin the middleground. B. Submarine rhythmic coarse-tail graded volcaniclastic
turbidites, upper member (from Breitkreuz, 1986). C-D. Outcrop view and detail of
lower member felsic volcaniclastic debris flow deposit with rafts of fine-grained ash-
bearing flow deposits. E. Detail of upper member ash-bearing flow deposit showing
cross-bedding. F. Outcrop overview. G. Thin-bedded ash-bearing flow deposits. H.
Graded volcaniclastic turbidites (from Bahlburg, 1990).
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Figure 6. Outcrop pictures of the Aguada de la Perdiz Formation at the Hyuaitiquina
locality. A. Overview of lower part of the section with alternating dark mafic lavas and
debris flow deposits in the foreground, and red to light colored volcaniclastic turbidite
sandstones and debris flow deposits in the background. B. Overview of upper part of
the section with predominant volcaniclastic turbidite sandstones and debris flow
deposits. C. Jointed basaltic-andesite lavas. D. Mafic hydroclastic breccia. E. Mafic
volcaniclastic debris flow deposit (from Bahlburg, 1990). F. Pebbly volcaniclastic
turbidite overlain by coarse-grained volcaniclastic turbidite sandstone. G. Sandstone
with symmetrical wave ripples (dashed white line). H. Alternations of laminated and
massive fine-grained turbidites; bed with pocket knife shows ball and pillow dewatering
structures.
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Figure 7. Kernel Density Estimates (KDEgbandwidth 25) of zircon U-Pb ages of detrital
zircon in the lower Ordovician Aguada de la Perdiz Formation at Huaitiquina (HY19).
Abbreviations of orogens and orogenic and tectonic cycles according to Bahlburg et
al. (2025). TAuO: Terra Australis, Orogen./CA: Central Amazonian; F: Famatinian; MI:
Maroni-Iltacaiunas (Transamazonian);’ NP: Neoproterozoic rifting; OP: Olmos-
Pampean; RNJ: Rio Negro-duruena; RO: Rondonia-San Ignacio; S: Sunsas; VT:
Ventuari-Tapajos. Pie chart gives the age distribution in percent of the main
contributing source provinces.
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Table 1. Graptolite faunas and stratigraphic ages of different outcrops of the Aguada
de la Perdiz Formation, compiled from Fuenzalida (1957), Garcia et al. (1962), Schwab
(1973), Acenolaza and Durand (1975), Pérez (1983), Breitkreuz (1986), Coira and
Nullo (1989), Bahlburg et al. (1990), Gutierrez-Marco et al. (1996), Monteros et al.
(1996), Benedetto et al. (2008), Toro et al. (2019, 2020), and Maletz (pers. comm.,
2022,.2025). ‘Conodonts at Huaitiquina from Toro et al. (2020). Graptolites and
brachiopods of the Quebrada Grande Formation from Gonzalez et al. (2007). For
global stratigraphic stages see figure 3.
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916  Supplementary Figure 1. Representative cathodoluminescence (CL) images of zircons

917 predominantly showing oscillatory zoning characteristic of a magmatic origin. The
918 circles indicate the positions of 25 um diameter U-Pb isotope laser ablation spots.
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920 Supplementary Table 1. Detrital zircon age data of sample HY19.
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