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ABSTRACT. This study analyzes both the texture and foraminiferal and ostracod assemblages of recent (Quaternary) 
sediments from the Carrizal Bajo wetland, in the southern Atacama Desert of northern Chile. A transect carried out from 
the infralittoral zone to the landward margin of the active wetland allowed four coastal sectors to be differentiated based 
on the distribution and abundance of these faunal groups. The infralittoral, shallow marine areas (sector 1) are composed 
of bioclastic sandy sediments extremely rich in foraminifera and ostracods, which contrast with their marked scarcity 
or absence in the very fine sands and very coarse muds of the adjacent intertidal-supratidal zones and washover fans 
(sector 2). Scarce resedimented shells of ostracods and the gastropod Heleobia copiapoensis characterize the peaty sandy 
muds of the lagoon bottom (sector 3), a hostile environment for the groups studied due to intermittent anoxic conditions 
and frequent changes in salinity. The innermost (landward) margin of the wetland (sector 4) is characterized by sandy 
silts with a rich freshwater fauna in the vicinity of springs, as well as an unexpected occurrence of resedimented marine 
foraminifera ~650 m inland. These results can be applied in future research related to investigating: 1) the environmental 
degradation of the system, should the density and diversity of these faunal groups decrease or even disappear over time; 
2) the reconstruction of paleoenvironments in recent Quaternary deposits, in case the taxa determined are present in the 
fossil record; or 3) the identification of recent Quaternary tsunamigenic layers along this coastline, characterized by the 
presence of infralittoral species within aeolian or wetland sedimentary sequences.
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RESUMEN. Foraminíferos y ostrácodos del humedal costero de Carrizal Bajo, desierto de Atacama. En este trabajo 
se presenta un análisis de la textura y meiofauna (foraminíferos y ostrácodos) en los sedimentos recientes (cuaternarios) 
del humedal costero de Carrizal Bajo (zona sur del desierto de Atacama, norte de Chile). Un transecto realizado desde 
la zona infralitoral hasta el margen interior del humedal activo ha permitido diferenciar cuatro sectores en función de 
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country (e.g., Whatley et al., 1997; Figueroa et al., 
2005; Hromic, 2011). However, research on these 
groups in shallow infralittoral zones and areas of 
high ecological value, such as lagoons and wetlands, 
is still very scarce (Zapata et al., 1995; Fernández, 
2010; Gómez-Martín et al., 2025a, b). Knowledge 
of non-marine ostracods is also essential, as some 
environments present significant salinity variations 
(Cárdenas et al., 2013). In the Atacama Desert of 
northern Chile, only Hartmann’s studies on shallow 
marine ostracods (Hartmann, 1962, 1965) or works 
about the distribution of foraminifera in some bays 
(Páez et al., 2001; Tavera et al., 2022; Romero et al., 
2023) are available.

The present article analyzes the associations of 
benthic foraminifera and ostracods in a complete 
transect from the infralittoral zone (~10 m depth) of 
a bay to a semi-arid wetland bordering the coastal 
lagoon of Carrizal Bajo, one of the southernmost 
of the Atacama Desert. The main objectives of this 
study are: 1) to examine the faunal contents (mainly 
benthic foraminifera, ostracods and diatoms) in 
surficial sediments of this wetland and adjacent 
shallow marine areas; and 2) to investigate the use of 
these faunal groups as bioindicators of environmental 
conditions.

2. Study area

The Carrizal Bajo coastal wetland is located 
east of the eponymous town, a small fishing 
settlement at ~28° S at the southern end of the 
Atacama Desert (Fig. 1A). Local climate is cold 
semi-arid, with dry summers and oceanic influence 

la distribución y abundancia de estos grupos faunísticos. Las zonas marinas someras del ambiente infralitoral (sector 1) 
están compuestas por sedimentos arenosos bioclásticos extremadamente ricos en foraminíferos y ostrácodos, lo que 
contrasta con la marcada escasez, o incluso ausencia, de estos grupos en las arenas muy finas y limos muy gruesos de las 
zonas intermareal y supramareal adyacentes (sector 2). Escasas conchas resedimentadas de ostrácodos y del gasterópodo 
Heleobia copiapoensis caracterizan los fangos arenosos turbosos del fondo de la laguna (sector 3), un medio hostil para 
los grupos estudiados debido a un ambiente anóxico intermitente y frecuentes cambios de salinidad. El margen interior 
del humedal (sector 4) está formado por limos arenosos con una rica fauna dulceacuícola próxima a manantiales, así 
como por un sorpresivo registro de foraminíferos marinos resedimentados ~650 m tierra adentro. Los resultados obtenidos 
en este estudio pueden aplicarse en investigaciones futuras relacionadas con: 1) la degradación ambiental de estos 
sistemas, en caso de que la densidad y diversidad de estos grupos decrezca o incluso desaparezca; 2) la reconstrucción de 
paleoambientes en depósitos cuaternarios recientes costeros, si los taxones determinados están también presentes en el 
registro fósil; o 3) la identificación de niveles tsunamigénicos recientes a lo largo de este litoral costero, caracterizados 
por la presencia de especies infralitorales dentro de secuencias sedimentarias eólicas o en humedales costeros.

Palabras clave: Foraminífero bentónico, Ostrácodo, Humedal costero, Desierto de Atacama, Norte de Chile. 

1. Introduction

Foraminifera and ostracods are among the most 
widely used biomonitors in the environmental 
assessment of coastal ecosystems, such as shallow 
marine areas, lagoons, wetlands, deltas, estuaries or 
fjords (Ruiz et al., 2005; Naik et al., 2023; Malek 
and Frontalini, 2024). Their temporal and spatial 
evolution provides useful information on eutrophication 
processes, paleogeographic changes, the impact of 
anthropogenic actions, and even the effects of high-
energy events, such as storms or tsunamis (Ruiz et al., 
2005; Hart et al., 2020; Francescangeli et al., 2021).

Several studies on benthic foraminifera and 
ostracods from continental shelves have obtained 
similar distribution patterns using the total associations 
(live and dead specimens) and biocenosis (stained 
individuals) (Ruiz et al., 1997; Donnici and 
Serandrei Barbero, 2002). In these marine areas, 
total counts (live + dead) are used to provide a tool 
for the interpretation of fossil foraminiferal and 
ostracod assemblages and their relationship with 
paleoenvironmental changes over time (Conradsen, 
1993; Lo Giudice Cappelli et al., 2019). Consequently, 
understanding complete assemblages in shallow 
marine areas, beaches, and wetlands in countries 
such as Chile, with a coastline exceeding 6,400 km, is 
essential for gaining new insights into the geological 
and paleoenvironmental evolution of the Chilean 
coastal margin during the recent Quaternary.

The benthic fauna of the Chilean continental 
shelf and deeper environments has been the subject 
of numerous studies on foraminifera and ostracods, 
mainly focused in the central and southern part of the 



36 Foraminifera and ostracods from the semiarid Carrizal Bajo coastal wetland, southern Atacama Desert

(Sarricolea et al., 2017). Precipitation is low, with 
a mean annual value typically below 30 mm, while 
temperatures range between 9.9 and 23.9 °C. This 
wetland is considered a point of high biodiversity 
within the Atacama Desert, hosting 49 species of 
flora, 76 birds, 10 reptiles, 2 amphibians, and 12 
mammals (Acevedo et al., 2012; Urenda, 2015).                  
It was declared as a Nature Sanctuary in 2019 by 
the Chilean Ministry of Environment.

The Carrizal coastal lagoon extends from the 
coast to the southeast, following the homonymous 
ravine along a length of approximately 600 m and 
connecting with the wetland, which has a total area 
of ~9 hectares including the water body (Fig. 1B) 
(Navarro et al., 2021). The lagoon is separated from 
the sea by a narrow sandy barrier ~150 m wide, which 

is only breached during severe winter storms and 
tsunamis, generally accompanied by the formation 
of overtopping fans on the landward side (Navarro 
et al., 2021). According to historical records, in the 
last 100 years, this barrier was destroyed during the 
1922, 2011, and 2022 near- and far-field tsunamis 
(El Noticiero de Huasco, 2011; Abad et al., 2023). 
In this coastal area, the dominant surface ocean 
circulation is from south to north (Fig. 1A). This 
circulation pattern is part of the Humboldt Current 
Surge System, considered one of the most biologically 
productive upwelling systems on the planet (Thiel 
et al., 2007). The mean tidal range is approximately 
1 m, and the wave regime is low-energy, although 
the mean significant wave height estimated for this 
coastal segment is ~2 m (Campos, 2016).

FIG. 1. A. Location of the Carrizal Bajo wetland in the southern Atacama Desert, with indication of ocean currents affecting the 
Chilean coasts. 1: warm countercurrent; 2: Humboldt current; 3: west drift current; and 4: Cape Horn current. B. Location of 
sediment surface samples collected in a transect between the infralittoral zone of the bay (Cb-1) and the coastal wetland at its 
southern edge (Cb-7).
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The Carrizal lagoon is occasionally inhabited by 
the fish Mugil cephalus, an abundant species in the 
Chilean coasts, whereas groundwater springs from 
an alluvial aquifer at the southern boundary of the 
lagoon allow plant species such as Typha angustifolia 
to thrive. It has been estimated that groundwater 
discharges to the coastal lagoon at an average rate 
of ~35 l/s (DGA, 2009). These waters have typically 
low conductivity (33-35 μS/cm) (DGA, 2021). 

This temporary closed system is, however, subject 
to changes in water quality, especially during the 
dry season, which promotes eutrophic conditions: 
high concentrations of nutrients, organic pollutants, 
chlorophyll, turbidity, and a decrease in dissolved 
oxygen (DGA, 2021). Some episodes of anoxia have 
also been recorded, with dissolved oxygen levels as 
low as 3%. A recent study analyzed organic pollutants 
in coastal sediments and determined that the Carrizal 
lagoon was degraded, with total concentrations of 
358.98 µg/g in the wetland and 217.88 µg/g on the 
beach (Tovar-Salvador et al., 2023). The major 
contributors were the nonylphenol ethoxylates, 
commonly used as an adjuvant for fertilizers, 
fungicides, and insecticides, along with UV filters 
and fragrances (galaxolide), and organophosphate 
compounds (organophosphate flame retardants). 
According to Tovar-Salvador et al. (2023), these 
high concentrations might be caused by uncontrolled 
untreated sewage discharges into the lagoon, which 
intensify during the summer months due to tourism.

3. Methodology

Seven sampling sites were selected along the 
Carrizal Bajo wetland area, from the shallow littoral 
zone to the active inner margin (Fig. 1B). Sample 
spacing was based on the expected representation 
across the different environments and served as a first 
approximation to characterize the wetland microfauna. 
Samples were collected along an ~800 m long transect 
from the infralittoral zone (Cb-1; 12 m depth) to the 
southern edge of the wetland (Cb-7; 2.5 m a.s.l.), 
including the intertidal zone of the beach (Cb-2;                                                                                                     
1 m depth), the sandy barrier (Cb-3; 1 m a.s.l.), the 
lagoon’s inner beach and old washover fan (Cb-4; 
0 m a.s.l.), an active eolian sheet (Cb-5; 2 m a.s.l.), 
and the bottom of the lagoon (Cb-6; ~0 m a.s.l.). 

All samples were taken from the upper 10 cm 
of the surface. This boundary was chosen as several 
infaunal species of benthic foraminifera may be present 

at this depth (Goldstein et al., 1995; Fentimen et al., 
2018). Cb-1 sample was collected by professional 
divers under the Marine Sediment Quality Atacama 
project (FONDECYT-11180015) of the Chilean 
National Agency for Research and Development 
(ANID), while the remaining ones were obtained 
with a plastic spatula and preserved in plastic bags.

The physicochemical parameters of the lagoon 
waters in Cb-4 and Cb-6 (pH, electrical conductivity, 
and dissolved oxygen concentration) were determined 
by using a Hanna HI98195 multi-parameter probe 
during the summer of 2022. On the other hand, 
according to DGA (2021) and Bonnail et al. (2023), 
the physicochemical properties of the seawater in 
the bay (Cb-1) and in the intertidal zone of the beach 
(Cb-2) are within normal marine ranges.

Textural analyses were carried out by using a 
Malvern Mastersizer at the University of Huelva, 
Spain, with the main constituent minerals noted, 
and grain-size statistics determined in Gradistat v8.0 
(Blott and Pye, 2001). In parallel, seven subsamples 
(25 g) were wet sieved through 250 μm and 125 μm 
sieves and analyzed for faunal content with a Leica 
SAPO stereoscopic binocular microscope to identify 
foraminiferal and ostracod specimens. This quantity of 
sediment sample is sufficient in (paleo)environmental 
analyses based on these microorganisms (e.g., Martínez                                 
et al., 2018; García et al., 2024). The most representative 
taxa were photographed with a Leica Flexcam C3 
camera coupled to microscope.

Foraminifera were classified after Boltovskoy 
et al. (1980), Loeblich and Tappan (1988), Páez 
et al. (2001), Hromic (2009), and the World Register 
of Marine Species (WoRMS). The classification 
of ostracods was carried out by comparison with 
Hartmann’s illustrations (Hartmann, 1962) and the 
WoRMS database. Following Martínez et al. (2018) 
and García et al. (2024), the abundance of the different 
taxa was categorized as rare (R: 1-3 specimens/25 g), 
common (C: 4-9 specimens/25 g), abundant (A: 10-
100 specimens/25 g), and very abundant (VA: >100 
specimens/25 g). The main taphonomic processes 
(e.g., preservation, fragmentation, abrasion) were 
also noted. The detailed taphonomic analyses were 
performed on foraminiferal and ostracod specimens, 
recording their preservation state as follows: excellent 
for specimens lacking sedimentary reworking, well-
preserved for those showing minor shell damage or 
abrasion, and poor for specimens with clear evidence 
of transport.
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Finally, the abundance of other faunal groups     
(e.g., siliceous sponges, echinoderms, bryozoans, 
mollusks, diatoms) was also identified for fractions 
>125 μm. The same quantitative categorization 
described for foraminifera and ostracods was followed, 
with the objective of completing the environmental 
information provided by these two groups. 

4. Results

4.1. Textural analysis of sediments and physico-
chemical parameters of waters

	
The bottom of the infralittoral zone (Cb-1) is 

composed of coarse and very coarse sands with 
very abundant bioclastic fragments and turritellid 
gastropod specimens. Average grain size decreases 
in the intertidal zone (Cb-2), the inner beach (Cb-3), 
and the aeolian sand sheet (Cb-5), mostly composed 
of mud (>50%) and very fine sands (>15%) (Fig. 2). 
Fragments of bivalves and echinoderms are frequent 
in Cb-2 and Cb-3 but disappear in Cb-5- Similarly, 
bryozoans are abundant only in Cb-1, rare in Cb-2 
and Cb-4, and absent from the remaining samples 
(Table 1). The remaining three samples were taken 
in the lagoon (Cb-4, Cb-6) and wetland (Cb-7), 
and their common characteristic is the frequent to 
very abundant presence of the gastropod Heleobia 
copiapoensis (Biese, 1944) (Table 1). Grain size 
decreases from the muddy sands of the former 
washover fan (Cb-4) to the peaty sandy muds of the 
lagoon bottom (Cb-6) and the muds of the wetland 
boundary (Cb-7) (Fig. 2).

The pH and electrical conductivity values in 
the lagoon waters near the beach (Cb-4) indicated 
normal levels for coastal marine environments                               
(pH 8.28; electrical conductivity 33,700 µS/cm), with 
slightly more basic and less saline conditions near 
the wetland (Cb-6) (pH 7.68; electrical conductivity 
32,600 µS/cm). The dissolved oxygen concentration 
measurements obtained were relatively low near the 
shoreline (5.4 mg/l), decreasing towards the landward 
edge of the lagoon (0.9 mg/l). 

4.2. Foraminifera

A total of 1,547 foraminifera belonging to 
eighteen species, fifteen of them benthic and three 
planktonic, were extracted (Fig. 2; Table 1). These 

microorganisms are diversified and abundant in 
the infralittoral zone (14 species; >60 specimens/
gram), while they are very scarce or even absent in 
the remaining samples (Fig. 2; Table 1). The most 
abundant species are Cibicides aknerianus (d’Orbigny, 
1846) and Melonis affinis (Reuss, 1851), followed by 
Buccella peruviana (d’Orbigny, 1839). These species 
are abundant to very abundant in Cb-1, some occur 
sporadically from Cb-2 to Cb-5, and others are even 
found in Cb-7, ~650 m inland. In this latter sample, 
a total of 260 frustules belonging to non-marine 
diatoms of the genera Campylodiscus, Cocconeis 
and Thalassiosira were identified (Table 1).

Taphonomic analysis also helped differentiate 
the outer bay from the lagoon environments.                            
The shells extracted from the infralittoral zone 
(Cb-1) and the wetland boundary (Cb-7) generally 
showed an excellent to well-preserved state (63%), 
while those in between (Cb-2 to Cb-6) showed clear 
evidence of fragmentation and abrasion (>90%).

4.3. Ostracods

Nine species were determined in the taxonomic 
study of 1,389 specimens (Fig. 2; Table 1). Most of 
these species (8) are abundant and very abundant 
in the infralittoral zone, among which stand out 
(>4 valves/gram) Paracytheridea granti LeRoy, 1943, 
Paracytheridea longicaudata chilensis Hartmann, 
1962, Patagonacythere tricostata Hartmann, 1962, 
Hemicytherura reticulata Hartmann, 1962, and 
Semixestoleberis debueni Hartmann, 1962. Although 
all specimens appeared with disarticulated valves, 
their taphonomic characteristics are highly variable, 
with well-preserved specimens dominating (57%), 
followed by those in excellent (18%) and poor (25%) 
conditions.

The rest of the ostracofauna is concentrated mainly 
on the southern edge of the Carrizal Bajo wetland 
(Cb-7), with more than 24 individuals per gram of 
Heterocypris salina (Brady, 1868) and some valves 
of S. debueni and Cyprideis beaconensis (Le Roy, 
1943). The latter species is common in the bottom of 
the lagoon (Cb-6), while these microcrustaceans are 
typically absent in the rest of the samples. Similarly, 
almost all ostracod specimens are either excellent or 
well-preserved in these samples (>84%), particularly 
H. salina, which commonly occurs with both valves 
articulated.
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FIG. 2. Granulometric distribution and abundance of different groups (foraminifera, ostracods, gastropods, diatoms) in the Carrizal bay and the Carrizal Bajo wetland. Foram: foraminifera; 
ostrac: ostracods; Heleob: Heleobia copiapoensis; diatom: diatoms. VfSand: very fine sand; FSand: fine sand; MSand: medium sand; CSand: coarse sand; VcSand: very coarse sand. 
The number of species was obtained in 25 g of sediments.
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TABLE 1. DISTRIBUTION AND ABUNDANCE OF FORAMINIFERA, OSTRACODS AND OTHER BIOLOGICAL 
GROUPS IN THE CARRIZAL BAJO WETLAND. 

SPECIES/SAMPLES Cb-1 Cb-2 Cb-3 Cb-4 Cb-5 Cb-6 Cb-7

B
E

N
T

H
IC

 F
O

R
A

M
IN

IF
E

R
A

Ammonia beccarii (Linnaeus, 1758) C R R
Anomalinoides incrassatus (Fichtel & Moll, 1798) C
Buccella peruviana (d’Orbigny, 1839) A R R R
Cibicides aknerianus (d’Orbigny, 1846) A R C
Cibicides moyanoi Marchant, Giglio & Ramírez, 2005 A R R R
Cibicides lobatulus (Walker & Jacob, 1798) C
Cibicidoides wuellerstorfi (Schwager, 1866) R R R
Discorbis vilardeboanus (d’Orbigny, 1839) A
Heterolepa ornata (Cushman, 1921) A
Melonis affinis (Reuss, 1851) VA
Quinqueloculina seminulum (Linnaeus, 1758) A
Spirillina sp. R R
Rosalina globularis d’Orbigny, 1826 A
Triloculina planciana d’Orbigny, 1839 A
Valvulineria inflata (d’Orbigny, 1839) A

PLANKTONIC 

FORAMINIFERA

Globigerina bulloides d’Orbigny, 1826 R
Globigerina sp. R
Neogloboquadrina pachyderma (Ehrenberg, 1861) R

INDIVIDUALS/25 g; FRACTION > 125 μm 1515 6 5 2 2 17

O
ST

R
A

C
O

D
S

Cyprideis beaconensis (Le Roy, 1943) A C C
Hemicythere foveata Hartmann, 1962 A
Hemicytherura reticulata Hartmann, 1962 VA
Heterocypris salina (Brady, 1868) VA
Loxoconcha fluctushumboldti Hartmann, 1962 A
Paracytheridea granti LeRoy, 1943 VA
Paracytheridea longicaudata chilensis Hartmann, 1962 VA R
Patagonacythere tricostata Hartmann, 1962 VA
Semixestoleberis debueni Hartmann, 1962 VA C

INDIVIDUALS/25 g; FRACTION > 125 μm 748 1 6 634

D
IA

TO
M

S

Campylodiscus sp. VA
Coscinodiscus sp. R
Cocconeis scutellum Ehrenberg, 1838 A
Thalassiosira sp. A

FRUSTULES/25 g; FRACTION > 125 μm 1 260

O
T

H
E

R
S

Mollusk fragments (mainly gastropods) VA A A C R C R
Heleobia copiaponensis (Biese, 1944)  C A VA
Echinoderm spines and ossicles A C C
Siliceous sponge spicules A
Bryozoans A R R
Fish teeth R
Characean gyrogonites R
Plant debris R C A A VA
Peat A A A A A A

R: rare (1-3 specimens/25 g), C: common (4-9 specimens/25 g), A: abundant (10-100 specimens/25 g), and VA: very abundant                   
(>100 specimens/25 g). See figures 1 and 2 for locations. Gray-shaded cells indicate samples in which that group was absent.
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5. Discussion

5.1. Environmental sectors of the Carrizal Bajo 
wetland

Textural analysis, the abundance and distribution 
of foraminiferal and ostracod species, as well as the 
presence of other faunal groups, define four sectors 
in the Carrizal Bajo wetland and the adjacent marine 
zone (Fig. 3). Sector 1 (infralittoral; sample Cb-1) 
is characterized by assemblages of both benthic 
foraminifera (e.g., Melonis, Buccella, Cibicides, 
Cibicidoides, Quinqueloculina) and ostracods 
(e.g., Cyprideis, Hemicytherura, Paracytheridea, 
Patagonacythere, Semixestoleberis), typical of 
the Chilean shallow shelf at depths between 0 and 
100 m (Hartmann, 1962, 1965; Zapata and Gutiérrez, 
1995; Zapata et al., 1995; Páez et al., 2001; Figueroa, 
2005; Hromic, 2009; Finger, 2013). Some species of 
foraminifera (Buccella peruviana, Quinqueloculina 
seminulum, Ammonia beccarii, Cibicides spp.) and 
ostracods (Cyprideis beaconensis) have also been 
found in bays, estuaries and lagoons of the Atlantic 
coast of Argentina (Laprida, 1998; Laprida and 
Bertels-Psotka, 2003), and C. beaconensis has been 
cited in brackish to hypersaline coastal lagoons and 
estuaries in California (Le Roy, 1943; Kern, 1971; 
Scott et al., 2011). Overall, this foraminiferal-ostracod 
assemblage is characteristic of well-oxygenated 
shallow marine waters, with moderate hydrodynamics 
and depths less than 50 m, often close to estuaries, 
bays, lagoons and river mouths.

Sector 2 (samples Cb-2 to Cb-5) includes 
different intertidal and supratidal environments 
whose common characteristic is the scarcity of 
both foraminifera and ostracods. This intermediate 
area is distinguished by the rare presence of marine 
foraminifera (A. beccarii, B. peruviana, Cibicides 
moyanoi, Cibicidoides wuellerstorfi) and ostracods 
(Paracytheridea longicaudata chilensis) with clear 
evidence of transport. The taphonomic status and 
the abundant presence of these marine taxa in the 
shallow marine zone of the bay (Cb-1) seem to reflect 
a process of reworking and inland transport of these 
specimens from the infralittoral zone to the outer 
sandy beaches and the lagoon, often accompanied 
by echinoderm remains and mollusk fragments 
(Table 1). Two of the species described in the Cb-2 
to Cb-5 samples (A. beccarii and B. peruviana) were 
proposed by Laprida et al. (2011) as dominant taxa in 

beach and dune environments of some Argentinean 
coasts, as a result of taphonomic processes that favor 
their selective preservation with respect to other 
species with less robust shells. A similar circumstance 
may have occurred with the thick-walled ostracod 
P. longicaudata chilensis (Cb-4).

The peaty bottom of the lagoon (Sector 3;
sample Cb-6) is characterized by the absence of 
foraminifera, the common presence of the ostracod 
C. beaconensis, as well as an abundant population of 
the gastropod H. copiapoensis. This sector presents
very unfavorable conditions for the development of 
benthic foraminifera, due to the high concentration
of organic matter (Table 1) and low oxygen content
by decomposition of plant debris (e.g., Alve, 1990; 
Gupta and Machain-Castillo, 1993), as well as frequent 
fluctuations in salinity. These conditions, close to
anoxia, would be caused by the low hydrodynamics 
of the waters, the permanent disconnection of the
lagoon with marine waters and the episodes of
eutrophication that it experiences intermittently,
which would have led to the disappearance of the
lagoon foraminifera.

The specimens of C. beaconensis  and                                        
H. copiapoensis found in sample Cb-6, better
adapted to the frequent fluctuations in salinity and
oxygenation of the waters, most likely came from
the edges of the lagoon, a location with more intense 
hydrodynamics and better oxygenation (Cazzaniga, 
2011; Scott et al., 2011). In this regard, the presence 
of organic pollutants in the lagoon (DGA, 2021;
Tovar-Salvador et al., 2023), likely associated with
agricultural activities upstream of the wetland, may 
have acted as a contributing factor to hypoxia and
anoxia in the bottom of the lagoon by promoting the 
rapid and massive growth of algae and macrophytes 
in the water body due to nutrient enrichment. At the 
time of sampling, the pH and electrical conductivity 
of lagoon waters adjacent to the beach (Cb-4) were
within typical ranges for coastal marine environments.
In contrast, waters near the wetland (Cb-6) exhibited 
slightly more basic and less saline conditions, likely 
influenced by groundwater discharge in this area.
Dissolved oxygen concentrations were relatively
low near the shoreline and decreased markedly
toward the landward margin of the lagoon. This last 
parameter, together with the elevated concentrations 
of organic pollutants in the lagoon, points to adverse 
conditions for benthic microfauna, as evidenced by
the faunal diversity discussed above.
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FIG. 3. Main species in the different environmental sectors of the bay and wetland-lagoon system of Carrizal Bajo. Photographs of the 
most representative species are included. Below, a schematic profile highlighting the main sedimentary and faunal associations 
is shown.
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The landward edge of the wetland (Sector 4; 
sample Cb-7) shows an interesting joint occurrence 
of abundant and well-preserved complete carapaces 
of the non-marine ostracod H. salina and the 
euryhaline ostracod C. beaconensis, together with 
some reworked marine species of foraminifera and 
ostracods (Table 1). H. salina is an ostracod with 
a cosmopolitan distribution and broad ecological 
requirements, but it is frequent in freshwater to 
slightly saline lakes and inland wetlands, as well 
as in coastal areas (Ganning, 1967; Cárdenas et al., 
2013). In Chile, this taxon has been described 
~250 km south of Carrizal Bajo, in the coastal 
wetland of Pachingo (Tongoy Bay), along with some 
intertidal benthic foraminifera and other freshwater 
and marine ostracod species, suggesting either coastal 
environments intermittently subjected to increased 
marine influence or increases in the discharge of 
inland waters to the system (May et al., 2013).

The most reasonable explanation for the 
co-occurrence of marine, brackish and freshwater 
species in the landward zone of the wetland lies in 
the recent high-energy marine flooding experienced 
by the Carrizal lagoon during the far-field tsunamis 
of 2011 and 2022. In these events, the lagoon 
overflowed and emptied, with the possible supply 
of small amounts of sediments from the infralittoral/
supralittoral area to this zone of the wetland. According 
to recent studies, the mixture of different associations 
of marine, brackish and freshwater microfauna has 
been proposed as a highly reliable indicator for 
the identification of tsunami deposits in coastal 
environments (Ruiz et al., 2008; Mamo et al., 2009; 
Nelson et al., 2015; Quintela et al., 2016; Gaffney 
et al., 2020). The nature of the high-energy process 
is also reflected in the presence of poorly preserved 
marine foraminiferal and ostracod shells (Dawson 
and Stewart, 2007; Abad et al., 2022), mixed with 
the better-preserved valves of C. beaconensis and 
H. salina.

5.2. Recommendations into recent paleo-
environmental reconstructions

The results of this research are directly applicable 
to the following topics: 
1. Transgressions and regressions. In the Central

Chile region (Algarrobo coast), the presence of a 
sandy layer with A. beccarii and C. beaconensis
interbedded between fluvial deposits allowed

reconstructing a mid-Holocene transgressive 
event that formed an estuary (Encinas et al., 
2006). Dramatic environmental modifications, 
such as coastal uplift and subsidence linked to 
megathrust earthquakes, can also be recorded by 
abrupt changes in the shallow marine to coastal 
microfauna association (e.g., Melnick et al., 
2012; Dura et al., 2016; Easton et al., 2022).

2. Environmental health of wetlands. The rotting
of plant remains at the bottom of wetlands can
cause episodes of anoxia, which can be evidenced 
by the absence or scarcity of microfauna. Low
foraminiferal density and diversity have been
found in areas with oxygen depletion (Ruiz et al.,
2012).

3. High-energy events. The tsunami associated
with the 2010 south-central Chile earthquake
caused the deposition of a sandy layer with a
mixture of microfauna (diatoms, ostracods,
broken foraminifera) from different environments 
(Horton et al., 2011), as in Cb-7. Consequently,
this article encourages the search for new evidence 
of these high-energy events in Carrizal Bajo and 
similar wetlands along the southern Atacama
Desert (Abad et al., 2020; Salazar et al., 2022).

6. Conclusions

1. The analysis of a transect of seven samples taken 
from the bay to the landward limit of the Carrizal 
Bajo wetland allowed the determination of 18
species of foraminifera and 9 species of ostracods 
from the study of almost 3,000 specimens.

2. The spatial distribution of these microorganisms, 
in conjunction with the data provided by textural 
analyses, and the diatom species identified,
allowed the recognition of four coastal sectors:
infralittoral; intertidal and supratidal; lagoon
bottom; and the innermost (landward) edge of
the wetland.

3. The state of preservation of the specimens and the 
mixture of species from different environments
suggest a significant transport of sediments from 
the infralittoral zone up to even 650 m inland,
due to the effect of high-energy events, possibly 
tsunamis.

4. The results of this study have immediate
applicability in the reconstruction of recent
paleoenvironmental scenarios in the coastal
deposits of the southern Atacama Desert.
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