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ABSTRACT. River water is a vital resource for human consumption, industrial use, power generation, and recreational 
activities, among other uses. A number of techniques are currently available to forecast streamflow at different temporal 
scales, although such approaches usually require different types of input data. The aim of this study is to analyze the 
long-term hydrological behavior of the San Juan River, located in the Arid Andes of Argentina, a region facing severe 
water scarcity. A Seasonal Autoregressive Integrated Moving Average (SARIMA) statistical model was applied to 
project future annual streamflow volume (Hm3) dynamics up to the 2070-2071 hydrological cycle. The results indicate 
a general downward trend. Over the next decade, critical low-flow periods are expected, similar to those observed in 
recent years. For the 2026-2029 period, projected flows are slightly above the average total annual consumption level 
(1,200 Hm³), yet insufficient to fully restore ecosystems affected by previous prolonged droughts. In contrast, for the 
2030-2035 period, forecasts suggest a sharp decline in streamflow to around 680 Hm³, nearly half the current annual 
consumption. These findings provide a solid basis for developing adaptive strategies to manage potential future water 
availability scenarios effectively.

Keywords: Arid Andes, Streamflow forecast, Drought, Statistical model.

RESUMEN. Pronóstico de caudal en el río San Juan, Andes áridos, basado en el modelo SARIMA. El agua de los 
ríos constituye un recurso vital para el consumo humano, el uso industrial, la generación de electricidad y las actividades 
recreativas, entre otros fines. En la actualidad, existen diversas técnicas para predecir el caudal de un río en diferentes 
escalas temporales; sin embargo, dichas metodologías usualmente requieren distintos tipos de datos de entrada para 
alimentar sus modelos predictivos. El objetivo de este estudio es analizar el comportamiento hidrológico de largo plazo 
del río San Juan, ubicado en los Andes áridos de Argentina, una región caracterizada por una marcada escasez hídrica. 
Para ello, se aplicó un modelo estadístico Autorregresivo Integrado de Media Móvil Estacional (SARIMA, por sus 
siglas en inglés), con el fin de proyectar la evolución futura del escurrimiento anual (Hm3) hasta el ciclo hidrológico 
2070-2071. Los resultados obtenidos muestran, en general, una tendencia descendente para este parámetro. En la próxima 
década, se prevén períodos críticos de bajos volúmenes de agua, comparables a los registrados en eventos recientes. 
Para el período 2026-2029, se estiman valores levemente superiores al promedio de consumo anual total (1.200 Hm3), 
aunque insuficientes para la recuperación integral de los ecosistemas afectados por las prolongadas y severas sequías 
precedentes. En cambio, para el período 2030-2035, las proyecciones indican una caída abrupta del escurrimiento anual 
hasta aproximadamente 680 Hm3, cifra que representa casi la mitad del consumo anual actual. Estos resultados ofrecen 
una base sólida para el diseño de estrategias de adaptación y gestión sostenible frente a los distintos escenarios futuros 
de disponibilidad hídrica.

Palabras clave: Andes áridos, Pronóstico de caudal, Sequía, Modelo estadístico.
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1. Introduction

Water, both surface and groundwater, is the 
most important substance for life and ecosystem 
development. Due to its nature and needs, mankind 
has confined the construction of settlements to sites 
with water availability of good quality.

In arid regions, water is predominantly stored 
and drained from the ground and/or subsurface 
to a greater extent than from the surface. This is 
because water bodies in contact with the atmosphere 
tend to undergo evaporation processes due to high 
temperatures, low precipitation, and lack of air 
humidity (Scanlon et al., 2005). When available 
and of sufficient quantity and quality, surface water 
is often preferred as the main source of supply due 
to the ease in collection and management, with 
groundwater playing a greater role at times of surface 
water scarcity (Siebert et al., 2010).

Surface water is a key indicator of changes in basin 
hydrological balances, influenced by alterations in 
water uses or to environmental shifts associated with 
meteorological or climatic conditions (Babel et al., 
2020; Ríos et al., 2025). Streamflow forecasting is 
inherently challenging due to the complexity of the 
hydrological system itself and its non-linear behavior 
(Wang et al., 2006; Zhang et al., 2018). Several 
approaches have been developed over the last few 
decades to enhance the accuracy of these forecasts, 
being a recent one that combines hydrological and 
statistical models with Artificial Intelligence (AI) 
tools (Núñez et al., 2023). However, the choice of 
which model to use depends on multiple factors, 
including basin characteristics, desired forecast period, 
data availability and frequency, and methods for 
measuring uncertainty, among other considerations.

In recent studies, AI has been increasingly applied 
to solve a wide range of problems in hydrology and 
water resources management (Biazar et al., 2025). 
Among these applications, time series forecasting 
models such as SARIMA (S: Seasonal, AR: 
Autoregressive, I: Integrated, MA: Moving Average) 
have been enhanced through AI-based modules to 
improve predictive accuracy in hydrological systems. 
Nowadays, the emergence of Explainable Artificial 
Intelligence (XAI) is offering a promising pathway 
to address the long-standing trade-off between 
prediction performance and interpretability in AI-
driven hydrological modeling. However, despite 
these important advances, and with the exception 

of Australia, countries in the Southern Hemisphere 
have made limited contributions to the development 
and application of XAI in this domain, being the 
Núñez et al. (2023) study one of such exceptions.

Certain authors have limited the benefits of the 
ARIMA-SARIMA models for predicting non-linear 
hydrological processes, claiming that AI tools (e.g., 
Artificial Neural Network, Support Vector Machine) 
work better under certain hydrological conditions (Wu 
et al., 2014; Zhang et al., 2018; Thakur et al., 2020). 
However, the predictive capacity of such numerical 
approaches is reduced to relatively short forecasting 
horizons because it does not incorporate parameters to 
describe the general characteristics of runoff fluctuations 
(cf. Zhang et al., 2018). Statistical modeling, on the 
contrary, has no time limits for prediction and has the 
advantage of associating probabilistic intervals that allow 
covering the occurrence of extreme values throughout 
the prediction period. Linearity and normality do not 
limit the use of statistical models, as deviations from 
these assumptions can be addressed through variable 
transformations and subsequent back-transformation 
of the predictions.

The San Juan River is the sole surface water 
source available for a population of approximately 
0.8 million inhabitants. To the best of the authors’ 
knowledge, there is only one short-term prediction 
model for the San Juan River streamflow (Dolling and 
Varas, 2002). The present contribution, on the contrary, 
aims to analyze the historical trends of the San Juan 
River streamflow, examine its intra- and inter-annual 
behavior patterns (cyclicity and/or periodicity), and 
establish short- and long-term prediction mechanisms, 
building a streamflow forecast model. Here, we used 
the SARIMA model, which has successfully been 
used for streamflow forecasting elsewhere (Valipour, 
2015; Zhang et al., 2015).

At present, the San Juan Province is experiencing 
one of the longest and most severe droughts 
(2010-present) on record (Garreaud et al., 2017; 
Rivera et al., 2017, 2021). The San Juan River’s 
2021-2022 annual runoff (536 Hm3) has been the 
lowest so far in the historical record (1909-2023). 
Moreover, water stored in the dams acting as 
reservoirs (Ullum, Punta Negra, and Caracoles) sums 
only ~217 Hm3, which is just 14% of the maximum 
storable volume. On average, the province requires 
around 1,200 Hm3 annually for human consumption, 
irrigation and industrial activity. These numbers 
illustrate the severity of the ongoing water crisis in 
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this region. Its effects are already impacting various 
productive sectors, as water allocations for irrigation 
have temporarily been cut off to prioritize water for 
human consumption (https://hidraulica.sanjuan.
gob.ar/). During the 2022-2023 period, the cut off 
was in place for ~one third of the year.

SARIMA-based streamflow forecasts are valuable 
tools for identifying potential future scenarios that 
can support informed land management decisions, 
ultimately reducing vulnerability to catastrophic 
events such as the severe droughts currently affecting 
the region.

2. Study area

The hydrological behavior of the San Juan River 
is highly variable both on a seasonal and year-to-
year basis, with an average annual streamflow 
and runoff for the 1909-2021 period of 60.9 m3/s 
and 1,955 Hm3, respectively (https://hidraulica.
sanjuan.gob.ar/). The river is nival in origin, i.e., 
its streamflow can be explained by the summer 
snowmelt accumulated during the previous winter 
(Bruniard and Moro, 1994; Poblete and Hryciw, 2017), 
with its behavior depending mainly on cryogenic 
conditions in the headwaters of the basin (Massone 
et al., 2016; Rodríguez et al., 2016; Crespo et al., 
2017; Arenson et al., 2022) and to a much lesser 
extent on contributions from transient summer storms 
(Vich et al., 2016). Winter snowpacks and summer 
streamflows are, in general, highly correlated, 
although this relationship becomes less significant 
during drought periods (Masiokas et al., 2006). 
Glacial and periglacial processes dominate the cold, 
high-altitude, headwaters of the basin (Villarroel 
et al., 2018; Tapia-Baldis, 2019; Tapia-Baldis and 
Trombotto-Liaudat, 2020).

The region’s climate system is controlled 
primarily by its subtropical latitudinal location, 
which is influenced by the Pacific subtropical 
anticyclone and phenomena like ENSO (El Niño 
Southern Oscillation), and its leeward position in 
the Andes (Minetti et al., 2007; Garreaud, 2009; 
Viale and Norte, 2009; Poblete and Castro, 2021). 
Furthermore, the San Juan Province belongs to 
the bioclimatic region of the South American Arid 
Diagonal (Bruniard, 1982; Abraham et al., 2020). 
As a result, it has a characteristic water deficit 
caused by a high potential evapotranspiration that 
far exceeds its low rainfall (Poblete and Minetti, 

1989). This scarcity of surface water resources has 
been intensifying over time (Rivera et al., 2021).  

The Andean sector has a cold and arid climate, 
with its precipitation almost exclusively in the form of 
snow (Gascoin et al., 2011). Annual precipitation varies 
dramatically during the cooling and warming phases of 
ENSO, with 60-70 and >1100-1200 mm, respectively 
(Montecinos and Aceituno, 2003; Zech et al., 2017). 
Solar radiation is very intense, averaging 400 W/m2 
per year for the 4,100-4,700 m a.s.l. altitude range 
(Schrott, 1991). As for the mean annual temperature, 
the 0 °C isotherm in the Arid Andes decreases in 
elevation from north to south, transitioning from 
approximately 4,300 to 3,700 m a.s.l. (Tapia-Baldis 
et al., 2019). The lowest areas are located east of 
the San Juan River basin, at an average elevation 
of 800 m a.s.l., where a mean annual temperature 
of 16.7 °C, and <100 mm of annual rainfall, mostly 
in the form of torrential rains during the summer 
months, are prevalent (Müller and Lovino, 2023).

In terms of monitoring, a gauging station is 
located in the San Juan River at the km 101 mark in 
the National Route 149 (Fig. 1). Other stations are 
the Álvarez Condarco in the Blanco River and the 
La Plateada station in the Los Patos River, where 
average annual streamflows of 24.4 and 49.9 m3/s 
have been measured, respectively.

3. Methodology

3.1. Data source and collection

Streamflow data from the km 101 gauging station 
were used for this study. As this station is located 
in the middle sector of the basin, the streamflows 
measured there are not affected by the dams built 
downstream. The data were extracted from the 
https://hidraulica.sanjuan.gob.ar/ website for the 
1909-2021 period. For the purpose of this case study 
application, the data were transformed from average 
monthly streamflow (m3/s) into semi-annual runoff 
(Hm3) values for the cold (April-September) and 
warm (October-March) periods. The warm period 
corresponds to snow and ice melting, while the 
cold period represents snow and ice accumulation. 
Thus, a total of 224 semi-annual runoff values were 
obtained. The semi-annual runoff data were used to 
build the predictive model, whose results were shown 
on an annual scale, after combining two consecutive 
semi-annual periods.
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The SARIMA model presented here was 
developed using the R package forecast (Hyndman 
and Khandakar, 2008; Costa et al., 2023; Larance 
et al., 2025).

3.2. Models for stochastic processes

A time series Yt (t = 1 ... T) is considered a 
realization of a stochastic process that can be 
described and predicted using parametric models 
such as the SARIMA model (Box and Jenkins, 1970). 
Basically, these models represent a current series 
value with information contained in previous data 
(autoregressive part, parameter p) and random errors 
(moving average part, parameter q). The statistical 
stationarity (constant mean) requirement is relaxed 
by including a third parameter d: integration or 
differentiation.

The most comprehensive, flexible and parsimonious 
approach to represent a stochastic process is the 

multiplicative SARIMA (p,d,q)(P,D,Q)[s] model. 
With a limited set of parameters, it is possible to 
determine regular trends, seasonalities or cycles 
occurring every s time units, as well as the potential 
interactions between the two components (Ioannidis 
and Nikolakakou, 2025). Its compact notation is:

ϕp (L)ΦP (Ls) Δd Δs
  Yt  = θq (L)ΘQ (Ls)at

Where L is the lag (or backshift) operator, 
which operates on an element of the time series to 
produce theprevious element, ϕp (L) and θq (L) denote 
respectively the autoregressive and moving average 
polynomials for the regular part (d being the order of 
integration for the regular part). ΦP (L

s) and

 

ΘQ (L
s) refer 

respectively to the autoregressive and moving average 
polynomials for the seasonal part (D being the order 
of integration for cyclicity). at is the white noise error 
term ~WN (0, σ2), which specifies E(at) = 0, Var (at) = σ2, 
and cov[at , at ‒ j] = 0 for j ≠ t.

FIG. 1.	A. Location map of the San Juan Province in Argentina. B. Main rivers, valleys, and river basins. The gauging stations mentioned 
in the text are shown as well.

D
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Such an approach is equivalent to describing 
the data as the sum of a deterministic component 
(expectation) and a stochastic component (white 
noise). Under the assumption of normal distribution, 
the parameters are estimated by maximum likelihood 
and then used to predict a new piece of data.

3.3. SARIMA model construction

The methodology to construct the appropriate 
SARIMA (p,d,q)(P,D,Q)[s] model for a seasonal 
time series Yt comprises the identification, estimation 
and validation, and prediction phases (Kabbilawsh 
et al., 2022; Muthee et al., 2023). These phases are 
explained below.

3.3.1. Identification
This phase is intended to propose the model (or 

models) that can represent the evolution of the Yt  series. 
First, the stationarity in the variance is analyzed 
through graphs. Any lack of stationarity is resolved by 
applying variance-stabilizing transformations. A generic 
transformation resource in SARIMA-case applications 
is the Box-Cox method or the logarithm over range 
translations (X±C) when positive asymmetries are 
present. Series graphs, autocorrelation function (ACF) 
and partial autocorrelation function (PACF) graphs, 
and unit root contrasts are then examined to determine 
the stationarity of the mean and note the presence of 
both regular trends corrected with the parameter d 
and seasonal behavior corrected with D and s. This 
leads to a SARIMA (p,d,q)(P,D,Q)[s] model proposal.

Parameter identification is a time-consuming 
process as it requires repeated tests until the estimation 
and validation results are adequate; it may even lead 
to rethinking the complexity of the model.

3.3.2. Estimation and validation
Once the parameter order is set, an estimation is 

performed by maximum likelihood under the assumption 
of normality, obtaining the fit measure (log likelihood) 
and each polynomial’s coefficients together with their 
standard errors. Measurement of predictive errors for a 
training data set is also considered for model diagnosis 
and validation: Mean Error (ME), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), Mean Percentage Error (MPE), 
Mean Absolute Percentage Error (MAPE), Mean 
Absolute Scaled Error (MASE), and Autocorrelation 
of Errors at Lag 1 (ACF1). All these errors must 

verify the white noise hypothesis, both graphically 
and analytically (Ljung-Box test), show no correlation 
structure and, where possible, adjust to a normal model 
(Jarque-Bera test). 

3.3.3. Prediction
Here, the goal is to obtain the best predictor 

YT (l) for a future value YT+l, where T denotes the 
last observed instant and l the number of periods in 
the future. This is achieved by minimizing the mean 
squared of prediction error eT(l) = E[YT+l ‒ ŶT(l)]2, 
which is equivalent to determining the conditional 
expectation to the data set IT:

ŶT (l) = E[YT+l | IT]

The optimal prediction, under the assumption 
of normality for the white noise error term, allows 
associating a probability interval to a specific prediction 
ŶT (l). Specifically, the prediction error is normally 
distributed with zero mean and variance V(eT (l)), that is:

eT (l) ~ N(0,V(eT (l)))

which enables the construction of a (1 ‒ α) prediction 
interval around the forecasted value. This interval 
provides a probabilistic measure of the uncertainty 
associated with the prediction and represents a range 
within which the future realization is expected to lie 
with probability 1 ‒ α , i.e.:

4. Results 

4.1. SARIMA model

Figure 2A shows the histograms for the original 
series YT and the transformed series Zt = ln(Yt ‒ 266), 
for which the asymmetry coefficient is -0,0024. The 
symmetry of the transformed series favors compliance 
with the optimal normality condition of the model. 
This, in turn, makes it possible to complement the 
prediction with probability intervals. The Yt series 
exhibits non-stationary behavior in its variance,while 
the Zt series stabilizes the variance and enables 
residuals to be normalized (Fig. 2B).
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As figure 3 shows, although the transformed series 
has a stable variance, it is not stationary at the mean, 
fluctuating around a straight line whose negative 
slope, although gentle, is statistically significant, 
as indicated by a p-value of 0.0062. 

The Zt series has varied behavioral cycles. In fact, 
according to the successive peaks and depressions 
(Fig. 3) and the comparative synthesis represented 
in boxplot format (Fig. 4), seasonality is observed 
in a 2-semester cycle between the warm and cold 
averages. By extending the time scale, a pattern 
of minimum values is detected in periods ranging 
from 10 to 14 semesters (green segmented lines of 
figure 3). The time series also reveals minimum values 
occurring at distinct temporal scales. Specifically, 
intermediate-period minima are observed at intervals 
ranging from 47 to 62 semesters (blue segmented 
lines in figure 3), whereas longer-term and more 
extreme minima occur at intervals between 100 and 
116 semesters (black segmented lines in figure 3).

The non-stationarity in the mean, such as the 
presence of a seasonal structure (P,D,Q)[s], is confirmed 
from the non-zero ACF function coefficients and the 
oscillations with peaks and plateaus extending up 
to lag 126 (Fig. 5). 

4.2. Time series modelling

The (0,0,1)(1,1,1)[2] model parameters were iden-
tified from the auto.arima function of the R project’s 
forecast library (model fit and validation measures 
shown in table 1; log likelihood = -206.58). However, 
since seasonal patterns and extreme peaks contrary 
to the white noise hypothesis remained, the residual 
plot obtained with the automatic estimation method 
was deemed not satisfactory (Fig. 6).

New (p,d,q)(P,D,Q)[s] values were therefore tested 
taking into account the significant ACF correlations 
indicating recurrent long-term cycles (Fig. 5). Some 
of the tests conducted are shown in table 2, of which 

FIG. 2.	Histograms (A) and time series (B) for the original variable YT and the transformed variable Zt. Panel A shows that the 
transformation reduces skewness and improves symmetry, favoring compliance with the normality assumption required by 
the SARIMA model. Panel B illustrates how the transformation stabilizes the variance of the series through time, a necessary 
condition for subsequent stationarity analysis and model fitting.
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FIG. 3.	Trend and cyclicity for the transformed time series Zt (as shown in figure 2B). The red segmented line represents the linear 
trend 16.5 ‒ 0.0053 × t, where t is the time in years. The horizontal dotted black line indicates the long-term mean value of the 
transformed series for the entire study period. Vertical, segmented lines highlight minimum values occurring at different 
temporal scales: green lines indicate short-term minima (10-14 semesters), blue lines represent intermediate recurrence intervals 
(47-62 semesters), and black lines denote long-term and extreme minima (100-116 semesters).

FIG. 4.	Boxplot showing the seasonality of the transformed time series Zt. Circles denote outliers. The figure highlights greater dispersion 
during the warm semester, suggesting increased streamflow variability.

FIG. 5.	Autocorrelation function (ACF) plot for the transformed variable Zt. The plot displays the correlation of the series with its own 
lagged values. The dashed blue lines represent the 95% confidence interval. Significant peaks out of these bounds indicate 
temporal dependencies or recurring patterns.
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FIG. 6.	Model residuals’ analysis (0,0,1)(1,1,1)[2]. The top panel shows standardized residuals over time, with no apparent structure. 
The ACF plot (bottom left) confirms the absence of significant autocorrelations (95% confidence interval represented by dashed 
blue lines). The histogram (bottom right) suggests approximate normality, supporting the white noise assumption. 

TABLE 1. ESTIMATED COEFFICIENTS IN THE (0,0,1)(1,1,1)[2] SARIMA MODEL.

ME RMSE MAE MPE MAPE MASE ACF1

-0.019719 0.602200 0.434701 -1.216997 7.285422 0.605157 -0.016462

ME: Mean Error. RMSE: Root Mean Squared Error. MAE: Mean Absolute Error. MPE: Mean Percentage Error. MAPE: Mean 
Absolute Percentage Error. MASE: Mean Absolute Scaled Error (MASE). ACF1: Autocorrelation of Errors at Lag 1.

TABLE 2. FIT, PREDICTION AND VALIDATION MEASURES FOR DIFFERENT SARIMA MODELS TESTED. 
LAST COLUMN (IN GREY), THE MODEL FOLLOWED IN THIS STUDY.

Model
 Parameters

(p,d,q) (0,0,1) (0,0,1) (1,0,0) (1,0,0) (1,0,0) (1,0,0)

(P,D,Q)[s] (1,1,1)[2] (1,1,0)[58] (1,1,0)[58] (0,1,0)[106] (0,1,0)
[116] (0,1,0)[126]

Fit measure log likelihood -206.580 -188.500 -185.450 -145.230 -126.880 -115.650

Training set error 
measures

ME -0.020 -0.103 -0.059 -0.050 -0.061 -0.043

RMSE 0.602 0.599 0.596 0.600 0.543 0.520

MAE 0.435 0.382 0.366 0.313 0.273 0.249

MPE -1.217 -2.523 -1.653 -1.450 -1.570 -1.182

MAPE 7.285 6.656 6.208 5.430 4.755 4.162

MASE 0.605 0.425 0.408 0.349 0.304 0.277

ACF1 -0.016 0.180 0.117 0.064 0.127 0.060

p-value
Ljung-Box 0.776 0.000 0.002 0.146 0.003 0.149

Jarque-Bera <0.001 <2.2×10-16 0.002 <0.001 0.002 0.087

Key for the training set error measures as in table 1.



88 SARIMA-based streamflow forecasting in the San Juan river, Arid Andes

1

FIG. 7.	Transformed time series Δ126 Zt = (1 ‒ L126)ln(Yt ‒ 266) and its autocorrelation function (ACF). The differentiated series shows 
stationarity, with the ACF confirming the absence of significant autocorrelations. The horizontal dotted black line in the upper 
panel indicates the long-term mean value of the transformed series, while the dashed blue lines in the lower panel encompass 
the 95% confidence interval.

1

the (1,0,0)(0,1,0)[126] model was found to be the 
best-performing. The seasonal parameter (126) 
corresponds to differencing between semiannual 
observations separated by 63 years, which reduces 
the effective length of the time series and restricts 
model calibration and forecasting to data from 1972 
onward. Its summarized form is as follows:

ϕp (L) Δs
    ln(Yt ‒ 266)=  at

The transformed series graph (1 ‒ L126)ln(D ‒ 266) 
indicates a non-seasonal but non-stationary 
behavior (decreasing trend), which is confirmed 
in the ACF plot and justifies the differentiation 
D = 1 (Fig. 7).

The Dickey-Fuller test with stationarity alternative 
hypothesis confirms, with a p-value of <<0.01, that 
the series Δ126 Zt is stationary (Fig. 8).

The (1,0,0)(0,1,0)[126] model estimation process 
results in ϕ1 = 0.6096 with an standard error of 0.0860 
(which under normality assumptions corresponds 
to an approximate 68% confidence interval). The 
resulting model is specified by: 

(1 ‒ 0.6096L)(1 ‒ L)(1 ‒ L126)ln(Yt ‒ 266) = at

Lastly, a 50-year prediction for the series 
Zt = ln(Yt ‒ 266) is shown in figure 9 for the period 
2021-2071 (dark blue line), in addition to 80% 
(pale blue) and 95% (light blue) probability intervals. 
The complete streamflow forecast results are provided 
in Supplementary Table 1.

5. Discussion

5.1. Runoff forecasting accuracy

In this section, the ability of the SARIMA (1,0,0)
(0,1,0)[126] model to forecast streamflows is analyzed. 
As mentioned in section 4.2, this model was selected 
due to its superior performance across various fit 
measures (Table 2) compared to a wide range of 
constructed models. Therefore, it stands as the most 
effective SARIMA model for forecasting streamflows 
of the San Juan River using the available historical 
dataset. Model accuracy is calculated as follows:

RE = 100 x (Ro‒ Rf)/Ro

Where RE is the relative error in percentage 
form, Ro is the observed runoff (Hm3), and Rf is the 

D
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FIG. 9.	Fifty-year forecast for the series Zt = ln(Yt ‒ 266)(dark blue line), including 80% (pale blue area) and 95% (light blue area) 
confidence intervals.

FIG. 8.	Graph for the series Δ126 Zt = D1 (1 ‒ L126)ln(Yt ‒ 266) and their ACF and PACF correlograms. The results suggest that the series 
is stationary with weak autocorrelation structure. The horizontal dotted black line in the upper panel indicates the long-term 
mean value of the transformed series, while the dashed blue lines in the rest of the panels encompass the 95% confidence 
intervals.

1
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forecasted runoff (Hm3). Relative errors are shown in 
table 3; 54% of the data exhibit acceptable forecasts 
(classified as excellent, very good, or good), 16% 
have moderate forecasts, and the remaining 30% are 
categorized as poor. Additionally, 54% of the data 
were predicted with a deficit, whereas 46% were 
forecasted with an excess. When examining the 
excess or deficit in the predicted values, it can be 
noted that among the 54% of data with acceptable 
forecasts, these values (whether excess or deficit) 
are relatively balanced. Nevertheless, the other 
categories exhibit different patterns. For instance, 
in the moderate forecast category, 87.5% of the data 
were estimated with a deficit, whereas in the poor 
forecast category, the maximum deficit observed 
was 58%. Conversely, for values calculated with an 
excess, the discrepancies are even greater, reaching 
780%. This latter group of data includes predicted 
values that significantly exceed the actual, observed 
values by several orders of magnitude and are 
deemed unrealistic from a hydrological perspective 
(Supplementary Table 2). 

The significant discrepancy between the predicted 
and actual values may be attributed to the reliability 
of the original data. In the semi-annual runoff data 
series, two initial (up to year 1920) observations 
reach maximum values of 5,323 and 5,899 Hm³ 
(Fig. 10A). Beyond this point, within the remaining 
dataset of 202 observations (spanning 101 years), 
these maximum values are not recorded again; in 
fact, the closest value is 31% lower than the highest 
pre-1920 recorded value (Fig. 10A). It is possible 
that these two unusually high peak values represent 
overestimations due to the measurement techniques 
employed at that time. These anomalous maximum 
values could exert an influence on the SARIMA 

model. In the validation dataset, there are also two 
predicted maximum values exhibiting a similar 
structure to those in the original series (Fig. 10B). 

5.2. Decomposing the time series

The additive decomposition of a time series 
allows for the identification of the components that 
must be represented in the model. This includes 
determining whether the series has a constant mean, 
exhibits pure seasonality, or, in more complex cases, 
displays multiple seasonalities, trends, and potential 
interactions between these components, in addition 
to defining the structure or complexity of the model 
(Ghide et al., 2022). In our case study, the first 
component, referred to as the trend, is represented 
by a moving average that indicates the series does 
not have a constant mean and displays multiple 
cyclical patterns. The seasonal component reflects 
variations around the trend within the smallest 
periodic unit (2). Finally, the remainder component 
(irregular or unstructured) is determined by the 
difference between the observed data and the two 
preceding components (Fig. 11).

In the second and third phases of parameter 
estimation and validation (Section 3.3.2), the optimal 
model was determined based on the AIC (Akaike 
Information Criterion), RMSE, MAPE, and p-value 
from the Ljung-Box test. The value of 126 defined a 
new series of 98 data points through differentiation, 
revealing a trend function that does not exhibit a 
constant mean but instead shows cycles of varying 
lengths that can be attributed to different causes or 
factors. Identifying the various hydro-climatological 
factors and their impact on the flow of the San Juan 
River is, however, beyond the scope of this study. 
Future research should delve into these aspects in 
greater detail to gain a better understanding of the 
hydrological dynamics at play.

5.3.	 Hydrological status and streamflow forecasting

Streamflow forecasting under the SARIMA model 
(Fig. 9) does not suggest adequate recovery for the 
average annual consumption (1,200 Hm3) over the next 
10 hydrological cycles (from 2025-2026 to 2034-2035) 
(Supplementary Table 1). Measured runoff for the recent 
cycles 2021-2022, 2022-2023, and 2023-2024, were 
recorded at 536, 1,010 and 1,061 Hm3, respectively. 
These are insufficient to restore the approximately 

TABLE 3. ACCURACY OF FORECASTED RUNOFF 
VALUES.

Relative Error (RE) Data %

RE < 5 (excellent) 16 16.3

5 ≥ RE < 10 (very good) 16 16.3

10 ≥ RE < 20 (good) 21 21.5

20 ≥ RE < 30 (moderate) 16 16.3

RE ≥ 30 (poor) 29 29.6

Total 98 100
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FIG.10.	A. Original variable Yt of semi-annual runoff (Hm3). Two highly anomalous (>5,300 Hm3) data points are observed at the 
beginning of the series (1914 and 1919). B. Transformed variable Zt of semi-annual runoff. The solid gray line indicates the 
observed data, while the segmented gray line represents the forecasted data.

FIG. 11.	Decomposing time series showing the trend, seasonal and remainder components. Uppermost panel shows the data series 
(as depicted in figure 8). Grey bars on the right of each panel represent scale references for each component.
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700 Hm3 values observed during the two previous 
cycles (2019-2020 and 2020-2021) (Supplementary 
Table 2). Compounding this issue are the critically 
low water reserves in dams and the desiccation of 
wetlands, which create an alarming hydrological 
situation. In the medium term, the reserves in dams 
would increase slightly over the next 10 cycles given 
the annual forecasted fluctuations with respect to 
average consumption. This is because the positive 
surpluses predicted for the period 2025-2029 would 
decrease due to a new deficit in the 2030-2035 period 
(Supplementary Table 1). This means that even the most 
abundant cycles under the current drought conditions 
may not be sufficient to recover higher reservoir storage 
levels in the dams. The significant, albeit slight, negative 
trend of decreasing average annual runoff revealed 
over the 112-year observation period (segmented 
red line in figure 3), is consistent with the lack of 
stationarity in cycles longer than 60 years corrected 
in the SARIMA model by the differencing/integration 
parameter (D = 1). The changes in general large-scale 
atmospheric circulation patterns and the southward 
expansion of the Hadley circulation cell have also 
been observed by others, arguing for a continuously 
decreasing precipitation trend, and consequently in 
runoff (Poblete and Minetti, 2017; Cook et al., 2020; 
Fahad et al., 2020; Rivera et al., 2021).

The only previous study applying Artificial 
Neural Network in the San Juan River basin utilized 
a hydro-climatological data series of 17 years 
(Dolling and Varas, 2002). While this approach 
may be correct from a numerical perspective, it 
falls short as a statistical method. Furthermore, in 
hydrological-climatological studies it is advisable 
to have data records spanning 30 years or more to 
cover climatic variability (Devasthale et al., 2023). 
Hydro-climatological data series for this region of the 
Andes are not extensive enough to allow streamflow 
forecasting based on artificial intelligence techniques.

Recently, in the Tupungato River basin, located 
~210 km south of the San Juan River, the Support 
Vector Regression (SVR) technique was applied for 
the first time to forecast short-term (1 month) flows 
(Korsic et al., 2023). In that study, SVR results were 
compared with those from the Classification and 
Regression Tree (CART) and the ARIMA model, 
concluding that SVR outperformed the other two 
methods. Besides this, an additional advantage of 
the SVR approach is that it uses easily accessible 
variables (e.g., precipitation, air temperature, 

streamflow, snow-related indices), solving the lack 
of data in these remote regions. A limitation of 
the Korsic et al. (2023) study is that the series of 
hydro-climatological data is only 17 years in length.

While the SVR model mentioned above 
demonstrated good streamflow prediction results 
in the short-term, there remains a gap in addressing 
long-term (>years) forecasting. Long-term approaches, 
such as the one undertaken here, are essential 
for developing adaptation strategies to different 
hydrological scenarios. To the best of the authors’ 
knowledge, no long-term flow forecasts have been 
conducted for the San Juan River basin to date.

The ARIMA model used in the work of Korsic 
et al. (2023) was selected using the auto.arima function 
in R. Nevertheless, just as discussed in the SARIMA 
model section, the model that best fits is generally 
obtained from testing various parameters considering 
the significant correlations of the ACF function. This 
suggests that an alternative ARIMA model may yield 
better performance than the one used in the Korsic et al. 
(2023). Moreover, the training set comprised only 10 
years of data, which is insufficient to adequately cover 
the potential variability of the streamflows. 

In the Arid Andes, previous studies that have 
conducted streamflow forecasts with machine learning 
or other techniques are insufficient to ascertain which 
demonstrate superior performance. On the one hand, 
data availability is very scarce; on the other, forecasts 
are predominantly focused on short-term predictions. 
Our case study benefits from an extensive 112-year 
period data set, which enables a detailed analysis 
of trends and fluctuations that may be cyclical, 
periodic or seasonal in nature. These tendencies 
are parameterized within the statistical modeling 
framework in a SARIMA environment. Therefore, 
a SARIMA model can be a valuable technique for 
predicting flow behavior in this region.

Finally, although the 112-year streamflow record 
for the San Juan River is substantial compared to other 
records elsewhere in the region, such a time span 
may still be too short to correctly identify broader 
trends or cycles. Besides, additional uncertainties 
in the modelling of hydrological processes are 
compounded by the fact that streamflows have been 
significantly altered by intense human activities 
(e.g., Tiwari and Chatterjee, 2010). Despite the 
limitations posed above, we believe that predictive 
streamflow models are a useful and necessary tool 
for water resource planning. 
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5.4.	 Cryospheric influence on the San Juan River

River streamflow represents a basin’s integrated 
response to climatic processes (Zhang et al., 2009, 
2018). In the Arid Andean basins, the greatest water 
recharge occurs in the highest sector, which coincides 
with cryospheric development. As a natural system, 
the cryosphere responds to environmental changes, 
mostly temperature and precipitation (Hock et al., 
2019). Such changes should be considered when 
analyzing the future hydrological situation in 
the region. Glacial and periglacial processes and 
their associated landforms affect the hydrological 
cycle across different spatial and temporal scales 
(Jones et al., 2019; Arenson et al., 2022). Seasonal 
snowmelt combined with surface (glacial) and ground 
(periglacial) ice melt are the feeding sources for the 
Cordilleran rivers in the region (Rodríguez et al., 
2016; Schaffer et al., 2019).

The San Juan River hydrograph shown in figure 12, 
reveals, on the one hand, its characteristic behavior over 
several decades, marked by a pronounced streamflow 
peak normally occurring between December and 
January. This peak has a strong component due 
to snowmelt (Julander and Clayton, 2018) plus an 
unquantified glacial-periglacial component. On 
the other hand, the hydrological regime has been 
altered after the onset of the hydrological drought 
at around 2010 (Rivera et al., 2021), except for 
the 2015-2016 and 2016-2017 wet periods. Since 
2010, the hydrographs show a fairly stable trend in 
streamflow values, including a slight streamflow 

peak towards late summer (February-March). The 
analysis of snow cover area and percentage of 
snowy days in the San Juan River basin (https://
observatorioandino.com/nieve/), suggests, however, 
minimal snow accumulation during winter (Ríos 
et al., 2025; Toum et al., 2025). Such snowpack 
would explain, to a great extent, streamflows due 
to melting between the spring and summer periods. 
At present, the little snow accumulation would 
generate a stable streamflow without causing any 
large streamflow peaks. We consider in this work 
that the faint streamflow peak towards late summer 
would be due to penetration of the thermal wave into 
the subsoil and subsequent thawing of the ground 
ice stored in the active layer. These two causes are 
enabled by the temporal and spatial decrease of the 
snow cover, which normally acts as a buffer layer 
isolating the subsoil from the atmosphere. Besides, 
we cannot rule out a greater melting of ice contained 
in the cryoforms due to temperature increases and 
their influence on streamflows. Future research in 
this region should therefore analyze the thermal 
regime and subsoil moisture content to understand 
its hydrological functioning in depth and its impact 
on streamflow dynamics.

6. Conclusions

In regions such as the Arid Andes, increases in 
temperature and decreases in snowfall associated with 
climate change require comprehensive hydrological 
studies and streamflow forecasting to evaluate possible 

FIG. 12.	 Monthly streamflow hydrographs of the San Juan River for individual hydrological years (2010-2011 to 2020-2021) and 
multi-decadal averages (1909-2021, 2000-2021, and 2010-2021). Months from O: October to S: September.
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water scarcity scenarios. In the present study, a 
SARIMA statistical model has been implemented to 
identify short- and long-term trends, periodicities, and 
cyclicities in the San Juan River, aimed at forecasting 
its future behavior over the next 50 years based on a 
>100-year dataset. Model results identify a general 
decreasing trend in the river streamflow along with 
different periodicities in its behavior. The basin’s 
hydrological situation for the next few decades is 
alarming because annual runoff values will continue 
to be below those required for human consumption 
and economic activities. Alternatively, there may 
be some years or small interspersed periods with 
abundant available water, although their accuracy 
needs to be interpreted with caution.
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