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ABSTRACT. River water is a vital resource for human consumption, industrial use, power generation, and recreational
activities, among other uses. A number of techniques are currently available to forecast streamflow at different temporal
scales, although such approaches usually require different types of input data. The aim of this study is to analyze the
long-term hydrological behavior of the San Juan River, located in the Arid Andes of Argentina, a region facing severe
water scarcity. A Seasonal Autoregressive Integrated Moving Average (SARIMA) statistical model was applied to
project future annual streamflow volume (Hm*) dynamics up to the 2070-2071 hydrological cycle. The results indicate
a general downward trend. Over the next decade, critical low-flow periods are expected, similar to those observed in
recent years. For the 2026-2029 period, projected flows are slightly above the average total annual consumption level
(1,200 Hm?), yet insufficient to fully restore ecosystems affected by previous prolonged droughts. In contrast, for the
2030-2035 period, forecasts suggest a sharp decline in streamflow to around 680 Hm?, nearly half the current annual
consumption. These findings provide a solid basis for developing adaptive strategies to manage potential future water
availability scenarios effectively.

Keywords: Arid Andes, Streamflow forecast, Drought, Statistical model.

RESUMEN. Pronéstico de caudal en el rio San Juan, Andes dridos, basado en el modelo SARIMA. El agua de los
rios constituye un recurso vital para el consumo humano, el uso industrial, la generacion de electricidad y las actividades
recreativas, entre otros fines. En la actualidad, existen diversas técnicas para predecir el caudal de un rio en diferentes
escalas temporales; sin embargo, dichas metodologias usualmente requieren distintos tipos de datos de entrada para
alimentar sus modelos predictivos. El objetivo de este estudio es analizar el comportamiento hidrologico de largo plazo
del rio San Juan, ubicado en los Andes aridos de Argentina, una region caracterizada por una marcada escasez hidrica.
Para ello, se aplic6 un modelo estadistico Autorregresivo Integrado de Media Movil Estacional (SARIMA, por sus
siglas en inglés), con el fin de proyectar la evolucion futura del escurrimiento anual (Hm?) hasta el ciclo hidrologico
2070-2071. Los resultados obtenidos muestran, en general, una tendencia descendente para este parametro. En la proxima
década, se prevén periodos criticos de bajos volimenes de agua, comparables a los registrados en eventos recientes.
Para el periodo 2026-2029, se estiman valores levemente superiores al promedio de consumo anual total (1.200 Hm?),
aunque insuficientes para la recuperacion integral de los ecosistemas afectados por las prolongadas y severas sequias
precedentes. En cambio, para el periodo 2030-2035, las proyecciones indican una caida abrupta del escurrimiento anual
hasta aproximadamente 680 Hm?, cifra que representa casi la mitad del consumo anual actual. Estos resultados ofrecen
una base solida para el disefio de estrategias de adaptacion y gestion sostenible frente a los distintos escenarios futuros
de disponibilidad hidrica.

Palabras clave: Andes dridos, Pronostico de caudal, Sequia, Modelo estadistico.
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1. Introduction

Water, both surface and groundwater, is the
most important substance for life and ecosystem
development. Due to its nature and needs, mankind
has confined the construction of settlements to sites
with water availability of good quality.

In arid regions, water is predominantly stored
and drained from the ground and/or subsurface
to a greater extent than from the surface. This is
because water bodies in contact with the atmosphere
tend to undergo evaporation processes due to high
temperatures, low precipitation, and lack of air
humidity (Scanlon et al., 2005). When available
and of sufficient quantity and quality, surface water
is often preferred as the main source of supply due
to the ease in collection and management, with
groundwater playing a greater role at times of surface
water scarcity (Siebert et al., 2010).

Surface water is a key indicator of changes in basin
hydrological balances, influenced by alterations in
water uses or to environmental shifts associated with
meteorological or climatic conditions (Babel et al.,
2020; Rios et al., 2025). Streamflow forecasting is
inherently challenging due to the complexity of the
hydrological system itself and its non-linear behavior
(Wang et al., 2006; Zhang et al., 2018). Several
approaches have been developed over the last few
decades to enhance the accuracy of these forecasts,
being a recent one that combines hydrological and
statistical models with Artificial Intelligence (Al)
tools (Nuiiez et al., 2023). However, the choice of
which model to use depends on multiple factors,
including basin characteristics, desired forecast period,
data availability and frequency, and methods for
measuring uncertainty, among other considerations.

In recent studies, Al has been increasingly applied
to solve a wide range of problems in hydrology and
water resources management (Biazar et al., 2025).
Among these applications, time series forecasting
models such as SARIMA (S: Seasonal, AR:
Autoregressive, I: Integrated, MA: Moving Average)
have been enhanced through Al-based modules to
improve predictive accuracy in hydrological systems.
Nowadays, the emergence of Explainable Artificial
Intelligence (XAl) is offering a promising pathway
to address the long-standing trade-off between
prediction performance and interpretability in Al-
driven hydrological modeling. However, despite
these important advances, and with the exception
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of Australia, countries in the Southern Hemisphere
have made limited contributions to the development
and application of XAl in this domain, being the
Nuiiez et al. (2023) study one of such exceptions.

Certain authors have limited the benefits of the
ARIMA-SARIMA models for predicting non-linear
hydrological processes, claiming that Al tools (e.g.,
Artificial Neural Network, Support Vector Machine)
work better under certain hydrological conditions (Wu
etal.,2014; Zhang et al., 2018; Thakur et al., 2020).
However, the predictive capacity of such numerical
approaches is reduced to relatively short forecasting
horizons because it does not incorporate parameters to
describe the general characteristics of runoff fluctuations
(cf. Zhang et al., 2018). Statistical modeling, on the
contrary, has no time limits for prediction and has the
advantage of associating probabilistic intervals that allow
covering the occurrence of extreme values throughout
the prediction period. Linearity and normality do not
limit the use of statistical models, as deviations from
these assumptions can be addressed through variable
transformations and subsequent back-transformation
of the predictions.

The San Juan River is the sole surface water
source available for a population of approximately
0.8 million inhabitants. To the best of the authors’
knowledge, there is only one short-term prediction
model for the San Juan River streamflow (Dolling and
Varas, 2002). The present contribution, on the contrary,
aims to analyze the historical trends of the San Juan
River streamflow, examine its intra- and inter-annual
behavior patterns (cyclicity and/or periodicity), and
establish short- and long-term prediction mechanisms,
building a streamflow forecast model. Here, we used
the SARIMA model, which has successfully been
used for streamflow forecasting elsewhere (Valipour,
2015; Zhang et al., 2015).

At present, the San Juan Province is experiencing
one of the longest and most severe droughts
(2010-present) on record (Garreaud et al., 2017;
Rivera et al., 2017, 2021). The San Juan River’s
2021-2022 annual runoff (536 Hm?) has been the
lowest so far in the historical record (1909-2023).
Moreover, water stored in the dams acting as
reservoirs (Ullum, Punta Negra, and Caracoles) sums
only ~217 Hm?, which is just 14% of the maximum
storable volume. On average, the province requires
around 1,200 Hm? annually for human consumption,
irrigation and industrial activity. These numbers
illustrate the severity of the ongoing water crisis in
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this region. Its effects are already impacting various
productive sectors, as water allocations for irrigation
have temporarily been cut off to prioritize water for
human consumption (https://hidraulica.sanjuan.
gob.ar/). During the 2022-2023 period, the cut off
was in place for ~one third of the year.

SARIMA-based streamflow forecasts are valuable
tools for identifying potential future scenarios that
can support informed land management decisions,
ultimately reducing vulnerability to catastrophic
events such as the severe droughts currently affecting
the region.

2. Study area

The hydrological behavior of the San Juan River
is highly variable both on a seasonal and year-to-
year basis, with an average annual streamflow
and runoff for the 1909-2021 period of 60.9 m?/s
and 1,955 Hm?, respectively (https://hidraulica.
sanjuan.gob.ar/). The river is nival in origin, i.e.,
its streamflow can be explained by the summer
snowmelt accumulated during the previous winter
(Bruniard and Moro, 1994; Poblete and Hryciw, 2017),
with its behavior depending mainly on cryogenic
conditions in the headwaters of the basin (Massone
et al., 2016; Rodriguez et al., 2016; Crespo et al.,
2017; Arenson et al., 2022) and to a much lesser
extent on contributions from transient summer storms
(Vich et al., 2016). Winter snowpacks and summer
streamflows are, in general, highly correlated,
although this relationship becomes less significant
during drought periods (Masiokas et al., 2000).
Glacial and periglacial processes dominate the cold,
high-altitude, headwaters of the basin (Villarroel
et al., 2018; Tapia-Baldis, 2019; Tapia-Baldis and
Trombotto-Liaudat, 2020).

The region’s climate system is controlled
primarily by its subtropical latitudinal location,
which is influenced by the Pacific subtropical
anticyclone and phenomena like ENSO (EI Nifio
Southern Oscillation), and its leeward position in
the Andes (Minetti et al., 2007; Garreaud, 2009;
Viale and Norte, 2009; Poblete and Castro, 2021).
Furthermore, the San Juan Province belongs to
the bioclimatic region of the South American Arid
Diagonal (Bruniard, 1982; Abraham et al., 2020).
As a result, it has a characteristic water deficit
caused by a high potential evapotranspiration that
far exceeds its low rainfall (Poblete and Minetti,

1989). This scarcity of surface water resources has
been intensifying over time (Rivera et al., 2021).

The Andean sector has a cold and arid climate,
with its precipitation almost exclusively in the form of
snow (Gascoin et al., 2011). Annual precipitation varies
dramatically during the cooling and warming phases of
ENSO, with 60-70 and >1100-1200 mm, respectively
(Montecinos and Aceituno, 2003; Zech et al., 2017).
Solar radiation is very intense, averaging 400 W/m?
per year for the 4,100-4,700 m a.s.l. altitude range
(Schrott, 1991). As for the mean annual temperature,
the 0 °C isotherm in the Arid Andes decreases in
elevation from north to south, transitioning from
approximately 4,300 to 3,700 m a.s.l. (Tapia-Baldis
et al., 2019). The lowest areas are located east of
the San Juan River basin, at an average elevation
of 800 m a.s.l., where a mean annual temperature
of 16.7 °C, and <100 mm of annual rainfall, mostly
in the form of torrential rains during the summer
months, are prevalent (Miiller and Lovino, 2023).

In terms of monitoring, a gauging station is
located in the San Juan River at the km 101 mark in
the National Route 149 (Fig. 1). Other stations are
the Alvarez Condarco in the Blanco River and the
La Plateada station in the Los Patos River, where
average annual streamflows of 24.4 and 49.9 m*/s
have been measured, respectively.

3. Methodology
3.1. Data source and collection

Streamflow data from the km 101 gauging station
were used for this study. As this station is located
in the middle sector of the basin, the streamflows
measured there are not affected by the dams built
downstream. The data were extracted from the
https://hidraulica.sanjuan.gob.ar/ website for the
1909-2021 period. For the purpose of this case study
application, the data were transformed from average
monthly streamflow (m?/s) into semi-annual runoff
(Hm?) values for the cold (April-September) and
warm (October-March) periods. The warm period
corresponds to snow and ice melting, while the
cold period represents snow and ice accumulation.
Thus, a total of 224 semi-annual runoff values were
obtained. The semi-annual runoff data were used to
build the predictive model, whose results were shown
on an annual scale, after combining two consecutive
semi-annual periods.
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FIG. 1. A. Location map of the San Juan Province in Argentina. B. Main rivers, valleys, and river basins. The gauging stations mentioned

in the text are shown as well.

The SARIMA model presented here was
developed using the R package forecast (Hyndman
and Khandakar, 2008; Costa et al., 2023; Larance
et al., 2025).

3.2. Models for stochastic processes

A time series Y, (¢t=1 ... T) is considered a
realization of a stochastic process that can be
described and predicted using parametric models
such as the SARIMA model (Box and Jenkins, 1970).
Basically, these models represent a current series
value with information contained in previous data
(autoregressive part, parameter p) and random errors
(moving average part, parameter ¢). The statistical
stationarity (constant mean) requirement is relaxed
by including a third parameter d: integration or
differentiation.

The most comprehensive, flexible and parsimonious
approach to represent a stochastic process is the

multiplicative SARIMA (p,d,q)(P,D,Q)[s] model.
With a limited set of parameters, it is possible to
determine regular trends, seasonalities or cycles
occurring every s time units, as well as the potential
interactions between the two components (Ioannidis
and Nikolakakou, 2025). Its compact notation is:

&, LA AY, = 0,L)O0 (L)a,

Where L is the lag (or backshift) operator,
which operates on an element of the time series to
produce theprevious element, ¢, (L) and 0, (L) denote
respectively the autoregressive and moving average
polynomials for the regular part (d being the order of
integration for the regular part). ®p (L") and @ (L) refer
respectively to the autoregressive and moving average
polynomials for the seasonal part (D being the order
of integration for cyclicity). a, is the white noise error
term ~WN (0, 6%), which specifies E(a,)=0, Var (a,) =0,
and cov[a,, a, ;] = 0 forj #t.
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Such an approach is equivalent to describing
the data as the sum of a deterministic component
(expectation) and a stochastic component (white
noise). Under the assumption of normal distribution,
the parameters are estimated by maximum likelihood
and then used to predict a new piece of data.

3.3. SARIMA model construction

The methodology to construct the appropriate
SARIMA (p,d,q)(P,D,Q)[s] model for a seasonal
time series Y, comprises the identification, estimation
and validation, and prediction phases (Kabbilawsh
et al.,2022; Muthee et al., 2023). These phases are
explained below.

3.3.1. Identification

This phase is intended to propose the model (or
models) that can represent the evolution of the Y, series.
First, the stationarity in the variance is analyzed
through graphs. Any lack of stationarity is resolved by
applying variance-stabilizing transformations. A generic
transformation resource in SARIMA-case applications
is the Box-Cox method or the logarithm over range
translations (X+C) when positive asymmetries are
present. Series graphs, autocorrelation function (ACF)
and partial autocorrelation function (PACF) graphs,
and unit root contrasts are then examined to determine
the stationarity of the mean and note the presence of
both regular trends corrected with the parameter d
and seasonal behavior corrected with D and s. This
leads to a SARIMA (p,d,q)(P,D,Q)[s] model proposal.

Parameter identification is a time-consuming
process as it requires repeated tests until the estimation
and validation results are adequate; it may even lead
to rethinking the complexity of the model.

3.3.2. Estimation and validation

Once the parameter order is set, an estimation is
performed by maximum likelihood under the assumption
of normality, obtaining the fit measure (log likelihood)
and each polynomial’s coefficients together with their
standard errors. Measurement of predictive errors for a
training data set is also considered for model diagnosis
and validation: Mean Error (ME), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Percentage Error (MPE),
Mean Absolute Percentage Error (MAPE), Mean
Absolute Scaled Error (MASE), and Autocorrelation
of Errors at Lag 1 (ACF1). All these errors must

verify the white noise hypothesis, both graphically
and analytically (Ljung-Box test), show no correlation
structure and, where possible, adjust to a normal model
(Jarque-Bera test).

3.3.3. Prediction

Here, the goal is to obtain the best predictor
Yr (1) for a future value Yr,;, where T denotes the
last observed instant and [ the number of periods in
the future. This is achieved by minimizing the mean
squared of prediction error ex(l) = E[Yr, — Yo(I)]',
which is equivalent to determining the conditional
expectation to the data set I:

YAvT (l) = E[YTH | IT]

The optimal prediction, under the assumption
of normality for the white noise error term, allows
associating a probability interval to a specific prediction
Y7 (1). Specifically, the prediction error is normally
distributed with zero mean and variance V(er (1)), that is:

er(l) ~N(0,V(er (1))

which enables the construction of a (1—a) prediction
interval around the forecasted value. This interval
provides a probabilistic measure of the uncertainty
associated with the prediction and represents a range
within which the future realization is expected to lie
with probability 1—a, i.e.:

P [?T(l) -N, = /V(er(l)) <Yr(D <% +N, _« /V(er(l))] =l-a

4. Results
4.1. SARIMA model

Figure 2A shows the histograms for the original
series Yr and the transformed series Z, = In(Y, — 266),
for which the asymmetry coefficient is -0,0024. The
symmetry of the transformed series favors compliance
with the optimal normality condition of the model.
This, in turn, makes it possible to complement the
prediction with probability intervals. The Y, series
exhibits non-stationary behavior in its variance,while
the Z, series stabilizes the variance and enables
residuals to be normalized (Fig. 2B).
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FIG. 2. Histograms (A) and time series (B) for the original variable Y; and the transformed variable Z;. Panel A shows that the
transformation reduces skewness and improves symmetry, favoring compliance with the normality assumption required by
the SARIMA model. Panel B illustrates how the transformation stabilizes the variance of the series through time, a necessary
condition for subsequent stationarity analysis and model fitting.

As figure 3 shows, although the transformed series
has a stable variance, it is not stationary at the mean,
fluctuating around a straight line whose negative
slope, although gentle, is statistically significant,
as indicated by a p-value of 0.0062.

The Z, series has varied behavioral cycles. In fact,
according to the successive peaks and depressions
(Fig. 3) and the comparative synthesis represented
in boxplot format (Fig. 4), seasonality is observed
in a 2-semester cycle between the warm and cold
averages. By extending the time scale, a pattern
of minimum values is detected in periods ranging
from 10 to 14 semesters (green segmented lines of
figure 3). The time series also reveals minimum values
occurring at distinct temporal scales. Specifically,
intermediate-period minima are observed at intervals
ranging from 47 to 62 semesters (blue segmented
lines in figure 3), whereas longer-term and more
extreme minima occur at intervals between 100 and
116 semesters (black segmented lines in figure 3).

The non-stationarity in the mean, such as the
presence of a seasonal structure (P,D,Q)[s], is confirmed
from the non-zero ACF function coefficients and the
oscillations with peaks and plateaus extending up
to lag 126 (Fig. 5).

4.2. Time series modelling

The (0,0,1)(1,1,1)[2] model parameters were iden-
tified from the auto.arima function of the R project’s
forecast library (model fit and validation measures
shown in table 1; log likelihood =-206.58). However,
since seasonal patterns and extreme peaks contrary
to the white noise hypothesis remained, the residual
plot obtained with the automatic estimation method
was deemed not satisfactory (Fig. 6).

New (p,d,q)(P,D,Q)[s] values were therefore tested
taking into account the significant ACF correlations
indicating recurrent long-term cycles (Fig. 5). Some
of the tests conducted are shown in table 2, of which
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FIG. 3. Trend and cyclicity for the transformed time series Z; (as shown in figure 2B). The red segmented line represents the linear
trend 16.5—0.0053 xt, where t is the time in years. The horizontal dotted black line indicates the long-term mean value of the
transformed series for the entire study period. Vertical, segmented lines highlight minimum values occurring at different
temporal scales: green lines indicate short-term minima (10-14 semesters), blue lines represent intermediate recurrence intervals
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TABLE 1. ESTIMATED COEFFICIENTS IN THE (0,0,1)(1,1,1)[2] SARIMA MODEL.

ME RMSE MAE MPE MAPE MASE ACF1

-0.019719 0.602200 0.434701 -1.216997 7.285422 0.605157 -0.016462

ME: Mean Error. RMSE: Root Mean Squared Error. MAE: Mean Absolute Error. MPE: Mean Percentage Error. MAPE: Mean
Absolute Percentage Error. MASE: Mean Absolute Scaled Error (MASE). ACF1: Autocorrelation of Errors at Lag 1.
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FIG. 6. Model residuals’ analysis (0,0,1)(1,1,1)[2]. The top panel shows standardized residuals over time, with no apparent structure.
The ACF plot (bottom left) confirms the absence of significant autocorrelations (95% confidence interval represented by dashed
blue lines). The histogram (bottom right) suggests approximate normality, supporting the white noise assumption.

TABLE 2. FIT, PREDICTION AND VALIDATION MEASURES FOR DIFFERENT SARIMA MODELS TESTED.
LAST COLUMN (IN GREY), THE MODEL FOLLOWED IN THIS STUDY.

(p.d.0) 00D (00 (1.0.0) 1L00) (100 (100
Model
P
TR epQI LR (o) aops odonoes (Y @zl
Fit measure log likelihood -206.580 -188.500 -185.450 -145.230 -126.880 -115.650
ME -0.020 -0.103 -0.059 -0.050 -0.061 -0.043
RMSE 0.602 0.599 0.596 0.600 0.543 0.520
MAE 0.435 0.382 0.366 0.313 0.273 0.249
Training set error 1217 2523 -1.653 -1.450 -1.570 -1.182
measures
MAPE 7.285 6.656 6.208 5.430 4.755 4.162
MASE 0.605 0.425 0.408 0.349 0.304 0.277
ACF1 -0.016 0.180 0.117 0.064 0.127 0.060
Ljung-Box 0.776 0.000 0.002 0.146 0.003 0.149
p-value
Jarque-Bera <0.001 <2.2x101 0.002 <0.001 0.002 0.087

Key for the training set error measures as in table 1.
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the (1,0,0)(0,1,0)[126] model was found to be the
best-performing. The seasonal parameter (126)
corresponds to differencing between semiannual
observations separated by 63 years, which reduces
the effective length of the time series and restricts
model calibration and forecasting to data from 1972
onward. Its summarized form is as follows:

¢, (L) AJIn(Y,—266)=a,

The transformed series graph (1 —L")In(D—266)
indicates a non-seasonal but non-stationary
behavior (decreasing trend), which is confirmed
in the ACF plot and justifies the differentiation
D=1 (Fig. 7).

The Dickey-Fuller test with stationarity alternative
hypothesis confirms, with a p-value of <<0.01, that
the series Al Z, is stationary (Fig. 8).

The (1,0,0)(0,1,0)[126] model estimation process
results in ¢, = 0.6096 with an standard error of 0.0860
(which under normality assumptions corresponds
to an approximate 68% confidence interval). The
resulting model is specified by:

(1 -0.6096L)(1 — L)(1 — L)In(Y, - 266) = q,

SARIMA-BASED STREAMFLOW FORECASTING IN THE SAN JUAN RIVER, ARID ANDES

Lastly, a 50-year prediction for the series
Z,= In(Y,— 266) is shown in figure 9 for the period
2021-2071 (dark blue line), in addition to 80%
(pale blue) and 95% (light blue) probability intervals.
The complete streamflow forecast results are provided
in Supplementary Table 1.

5. Discussion
5.1. Runoff forecasting accuracy

In this section, the ability of the SARIMA (1,0,0)
(0,1,0)[126] model to forecast streamflows is analyzed.
As mentioned in section 4.2, this model was selected
due to its superior performance across various fit
measures (Table 2) compared to a wide range of
constructed models. Therefore, it stands as the most
effective SARIMA model for forecasting streamflows
of the San Juan River using the available historical
dataset. Model accuracy is calculated as follows:

RE =100 x (R,~ R)/R,

Where RE is the relative error in percentage
form, R, is the observed runoff (Hm?), and Ry is the
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FIG. 7. Transformed time series A{zs Z,= (1 —-L"%In(Y,—266) and its autocorrelation function (ACF). The differentiated series shows
stationarity, with the ACF confirming the absence of significant autocorrelations. The horizontal dotted black line in the upper
panel indicates the long-term mean value of the transformed series, while the dashed blue lines in the lower panel encompass

the 95% confidence interval.
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FIG. 9. Fifty-year forecast for the series Z;, = In(Y, — 266)(dark blue line), including 80% (pale blue area) and 95% (light blue area)
confidence intervals.
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forecasted runoff (Hm?). Relative errors are shown in
table 3; 54% of the data exhibit acceptable forecasts
(classified as excellent, very good, or good), 16%
have moderate forecasts, and the remaining 30% are
categorized as poor. Additionally, 54% of the data
were predicted with a deficit, whereas 46% were
forecasted with an excess. When examining the
excess or deficit in the predicted values, it can be
noted that among the 54% of data with acceptable
forecasts, these values (whether excess or deficit)
are relatively balanced. Nevertheless, the other
categories exhibit different patterns. For instance,
in the moderate forecast category, 87.5% of the data
were estimated with a deficit, whereas in the poor
forecast category, the maximum deficit observed
was 58%. Conversely, for values calculated with an
excess, the discrepancies are even greater, reaching
780%. This latter group of data includes predicted
values that significantly exceed the actual, observed
values by several orders of magnitude and are
deemed unrealistic from a hydrological perspective
(Supplementary Table 2).

The significant discrepancy between the predicted
and actual values may be attributed to the reliability
of the original data. In the semi-annual runoff data
series, two initial (up to year 1920) observations
reach maximum values of 5,323 and 5,899 Hm?
(Fig. 10A). Beyond this point, within the remaining
dataset of 202 observations (spanning 101 years),
these maximum values are not recorded again; in
fact, the closest value is 31% lower than the highest
pre-1920 recorded value (Fig. 10A). It is possible
that these two unusually high peak values represent
overestimations due to the measurement techniques
employed at that time. These anomalous maximum
values could exert an influence on the SARIMA

TABLE 3. ACCURACY OF FORECASTED RUNOFF

VALUES.
Relative Error (RE) Data %
RE <5 (excellent) 16 16.3
5>RE < 10 (very good) 16 16.3
10 > RE < 20 (good) 21 21.5
20 > RE < 30 (moderate) 16 16.3
RE > 30 (poor) 29 29.6
Total 98 100

model. In the validation dataset, there are also two
predicted maximum values exhibiting a similar
structure to those in the original series (Fig. 10B).

5.2. Decomposing the time series

The additive decomposition of a time series
allows for the identification of the components that
must be represented in the model. This includes
determining whether the series has a constant mean,
exhibits pure seasonality, or, in more complex cases,
displays multiple seasonalities, trends, and potential
interactions between these components, in addition
to defining the structure or complexity of the model
(Ghide et al., 2022). In our case study, the first
component, referred to as the trend, is represented
by a moving average that indicates the series does
not have a constant mean and displays multiple
cyclical patterns. The seasonal component reflects
variations around the trend within the smallest
periodic unit (2). Finally, the remainder component
(irregular or unstructured) is determined by the
difference between the observed data and the two
preceding components (Fig. 11).

In the second and third phases of parameter
estimation and validation (Section 3.3.2), the optimal
model was determined based on the AIC (Akaike
Information Criterion), RMSE, MAPE, and p-value
from the Ljung-Box test. The value of 126 defined a
new series of 98 data points through differentiation,
revealing a trend function that does not exhibit a
constant mean but instead shows cycles of varying
lengths that can be attributed to different causes or
factors. Identifying the various hydro-climatological
factors and their impact on the flow of the San Juan
River is, however, beyond the scope of this study.
Future research should delve into these aspects in
greater detail to gain a better understanding of the
hydrological dynamics at play.

5.3. Hydrological status and streamflow forecasting

Streamflow forecasting under the SARIMA model
(Fig. 9) does not suggest adequate recovery for the
average annual consumption (1,200 Hm?) over the next
10 hydrological cycles (from 2025-2026 to 2034-2035)
(Supplementary Table 1). Measured runoff for the recent
cycles 2021-2022, 2022-2023, and 2023-2024, were
recorded at 536, 1,010 and 1,061 Hm?, respectively.
These are insufficient to restore the approximately
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FIG.10. A. Original variable Y, of semi-annual runoff (Hm?). Two highly anomalous (>5,300 Hm®) data points are observed at the

beginning of the series (1914 and 1919). B. Transformed variable Z; of semi-annual runoff. The solid gray line indicates the

observed data, while the segmented gray line represents the forecasted data.
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700 Hm® values observed during the two previous
cycles (2019-2020 and 2020-2021) (Supplementary
Table 2). Compounding this issue are the critically
low water reserves in dams and the desiccation of
wetlands, which create an alarming hydrological
situation. In the medium term, the reserves in dams
would increase slightly over the next 10 cycles given
the annual forecasted fluctuations with respect to
average consumption. This is because the positive
surpluses predicted for the period 2025-2029 would
decrease due to a new deficit in the 2030-2035 period
(Supplementary Table 1). This means that even the most
abundant cycles under the current drought conditions
may not be sufficient to recover higher reservoir storage
levels in the dams. The significant, albeit slight, negative
trend of decreasing average annual runoff revealed
over the 112-year observation period (segmented
red line in figure 3), is consistent with the lack of
stationarity in cycles longer than 60 years corrected
in the SARIMA model by the differencing/integration
parameter (D = 1). The changes in general large-scale
atmospheric circulation patterns and the southward
expansion of the Hadley circulation cell have also
been observed by others, arguing for a continuously
decreasing precipitation trend, and consequently in
runoff (Poblete and Minetti, 2017; Cook et al., 2020;
Fahad et al., 2020; Rivera et al., 2021).

The only previous study applying Artificial
Neural Network in the San Juan River basin utilized
a hydro-climatological data series of 17 years
(Dolling and Varas, 2002). While this approach
may be correct from a numerical perspective, it
falls short as a statistical method. Furthermore, in
hydrological-climatological studies it is advisable
to have data records spanning 30 years or more to
cover climatic variability (Devasthale et al., 2023).
Hydro-climatological data series for this region of the
Andes are not extensive enough to allow streamflow
forecasting based on artificial intelligence techniques.

Recently, in the Tupungato River basin, located
~210 km south of the San Juan River, the Support
Vector Regression (SVR) technique was applied for
the first time to forecast short-term (1 month) flows
(Korsic et al., 2023). In that study, SVR results were
compared with those from the Classification and
Regression Tree (CART) and the ARIMA model,
concluding that SVR outperformed the other two
methods. Besides this, an additional advantage of
the SVR approach is that it uses easily accessible
variables (e.g., precipitation, air temperature,

streamflow, snow-related indices), solving the lack
of data in these remote regions. A limitation of
the Korsic et al. (2023) study is that the series of
hydro-climatological data is only 17 years in length.

While the SVR model mentioned above
demonstrated good streamflow prediction results
in the short-term, there remains a gap in addressing
long-term (>years) forecasting. Long-term approaches,
such as the one undertaken here, are essential
for developing adaptation strategies to different
hydrological scenarios. To the best of the authors’
knowledge, no long-term flow forecasts have been
conducted for the San Juan River basin to date.

The ARIMA model used in the work of Korsic
etal. (2023) was selected using the auto.arima function
in R. Nevertheless, just as discussed in the SARIMA
model section, the model that best fits is generally
obtained from testing various parameters considering
the significant correlations of the ACF function. This
suggests that an alternative ARIMA model may yield
better performance than the one used in the Korsic ez al.
(2023). Moreover, the training set comprised only 10
years of data, which is insufficient to adequately cover
the potential variability of the streamflows.

In the Arid Andes, previous studies that have
conducted streamflow forecasts with machine learning
or other techniques are insufficient to ascertain which
demonstrate superior performance. On the one hand,
data availability is very scarce; on the other, forecasts
are predominantly focused on short-term predictions.
Our case study benefits from an extensive 112-year
period data set, which enables a detailed analysis
of trends and fluctuations that may be cyclical,
periodic or seasonal in nature. These tendencies
are parameterized within the statistical modeling
framework in a SARIMA environment. Therefore,
a SARIMA model can be a valuable technique for
predicting flow behavior in this region.

Finally, although the 112-year streamflow record
for the San Juan River is substantial compared to other
records elsewhere in the region, such a time span
may still be too short to correctly identify broader
trends or cycles. Besides, additional uncertainties
in the modelling of hydrological processes are
compounded by the fact that streamflows have been
significantly altered by intense human activities
(e.g., Tiwari and Chatterjee, 2010). Despite the
limitations posed above, we believe that predictive
streamflow models are a useful and necessary tool
for water resource planning.
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5.4. Cryospheric influence on the San Juan River

River streamflow represents a basin’s integrated
response to climatic processes (Zhang et al., 2009,
2018). In the Arid Andean basins, the greatest water
recharge occurs in the highest sector, which coincides
with cryospheric development. As a natural system,
the cryosphere responds to environmental changes,
mostly temperature and precipitation (Hock ef al.,
2019). Such changes should be considered when
analyzing the future hydrological situation in
the region. Glacial and periglacial processes and
their associated landforms affect the hydrological
cycle across different spatial and temporal scales
(Jones et al., 2019; Arenson et al., 2022). Seasonal
snowmelt combined with surface (glacial) and ground
(periglacial) ice melt are the feeding sources for the
Cordilleran rivers in the region (Rodriguez et al.,
2016; Schaffer et al., 2019).

The San Juan River hydrograph shown in figure 12,
reveals, on the one hand, its characteristic behavior over
several decades, marked by a pronounced streamflow
peak normally occurring between December and
January. This peak has a strong component due
to snowmelt (Julander and Clayton, 2018) plus an
unquantified glacial-periglacial component. On
the other hand, the hydrological regime has been
altered after the onset of the hydrological drought
at around 2010 (Rivera ef al., 2021), except for
the 2015-2016 and 2016-2017 wet periods. Since
2010, the hydrographs show a fairly stable trend in
streamflow values, including a slight streamflow
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peak towards late summer (February-March). The
analysis of snow cover area and percentage of
snowy days in the San Juan River basin (https://
observatorioandino.com/nieve/), suggests, however,
minimal snow accumulation during winter (Rios
et al., 2025; Toum et al., 2025). Such snowpack
would explain, to a great extent, streamflows due
to melting between the spring and summer periods.
At present, the little snow accumulation would
generate a stable streamflow without causing any
large streamflow peaks. We consider in this work
that the faint streamflow peak towards late summer
would be due to penetration of the thermal wave into
the subsoil and subsequent thawing of the ground
ice stored in the active layer. These two causes are
enabled by the temporal and spatial decrease of the
snow cover, which normally acts as a buffer layer
isolating the subsoil from the atmosphere. Besides,
we cannot rule out a greater melting of ice contained
in the cryoforms due to temperature increases and
their influence on streamflows. Future research in
this region should therefore analyze the thermal
regime and subsoil moisture content to understand
its hydrological functioning in depth and its impact
on streamflow dynamics.

6. Conclusions

In regions such as the Arid Andes, increases in
temperature and decreases in snowfall associated with
climate change require comprehensive hydrological
studies and streamflow forecasting to evaluate possible
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FIG. 12. Monthly streamflow hydrographs of the San Juan River for individual hydrological years (2010-2011 to 2020-2021) and
multi-decadal averages (1909-2021, 2000-2021, and 2010-2021). Months from O: October to S: September.
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water scarcity scenarios. In the present study, a
SARIMA statistical model has been implemented to
identify short- and long-term trends, periodicities, and
cyclicities in the San Juan River, aimed at forecasting
its future behavior over the next 50 years based on a
>100-year dataset. Model results identify a general
decreasing trend in the river streamflow along with
different periodicities in its behavior. The basin’s
hydrological situation for the next few decades is
alarming because annual runoff values will continue
to be below those required for human consumption
and economic activities. Alternatively, there may
be some years or small interspersed periods with
abundant available water, although their accuracy
needs to be interpreted with caution.
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