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ABSTRACT. The Abitagua Batholith is a Mid to Late Jurassic intrusive body in the Sub-Andean Zone of Ecuador. 
This batholith is theorized to be the source of alluvial gold in the Amazon rivers that drain from it, although due to its ​​
difficult access and location along protected areas it remains largely unexplored. This work aims to study the Abitagua 
Batholith using seismic velocity models that provide absolute and relative P-wave velocity and Vp/Vs ratios based on 
the inversion of the earthquake travel-time data recorded by the Ecuadorian survey networks RENSIG, RENAC, and 
ROVIG, and some stations of the Colombian Geological Service near the border with Ecuador. We use the absolute and 
relative P-wave velocity tomography models to describe the batholith’s vertical and horizontal components. The resolution 
in our velocity models displays values larger than 0.8 and cover all the crust and the upper mantle to depths of seventy 
kilometers. We identify two velocity anomalies, possibly associated with magmatic reservoirs under the batholith that, 
together with hypocenter data, suggest more recent magma intrusions. We conclude that these magmatic bodies relate to 
potential gold-bearing intrusions, which seem to concentrate near the transition zone between the negative and positive 
velocity anomalies, five kilometers north of the Jatunyaku River.

Keywords: Seismic velocity model, Jurassic, Intrusions, Sub-Andean Zone, Velocity anomalies, Magmatic reservoirs.

RESUMEN. Estudio del Batolito de Abitagua en la zona Subandina de Ecuador, usando modelos de velocidad 
obtenidos mediante tomografía sísmica. El Batolito de Abitagua es un cuerpo intrusivo del Jurásico Medio a Tardío 
en la zona Subandina del Ecuador. Este batolito se ha relacionado con la presencia de oro aluvial en los ríos amazónicos 
que drenan de él, aunque debido a su difícil acceso y ubicación a lo largo de áreas protegidas permanece en gran medida 
inexplorado. Este trabajo tiene como objetivo estudiar el Batolito de Abitagua utilizando modelos de velocidad sísmica 
que proporcionan la velocidad relativa y absoluta de onda P, así como la relación Vp/Vs. Estos modelos se obtuvieron 
mediante la inversión de los datos de tiempos de viaje de los sismos registrados por las redes sísmicas ecuatorianas 
RENSIG, RENAC y ROVIG, además de algunas estaciones del Servicio Geológico Colombiano cercanas a la frontera con 
Ecuador. Se utilizaron modelos de tomografía de velocidad relativa y absoluta de onda P para describir las componentes 
vertical y horizontal del batolito. La resolución de estos modelos de velocidad es superior a 0,8 y abarca toda la corteza 
y el manto superior hasta setenta kilómetros de profundidad. Se reconocen dos anomalías de velocidad, posiblemente 
asociadas con reservorios magmáticos debajo del batolito, lo que, junto con los datos de hipocentros, indicarían intrusiones 
de magma más recientes. Se concluye que estos cuerpos magmáticos estarían relacionados con potenciales intrusiones 
auríferas, las cuales parecen concentrarse cerca de la zona de transición entre las anomalías de velocidad negativa y 
positiva, cinco kilómetros al norte del río Jatunyaku.

Palabras clave: Modelo de velocidad sísmica, Jurásico, Intrusiones, Zona Subandina, Anomalías de velocidad, Reservorios magmáticos.
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the Colonso-Chalupas Reserve and the Llanganates 
National Park. Consequently, scientific investigations 
of the batholith have relied on samples taken from 
riverbanks and areas where access is relatively 
easier (Aspden and Litherland, 1992; Litherland                             
et al., 1994; Ruiz, 2002). In the early 1990s, gold 
was discovered in samples taken from rivers sourced 
from the Abitagua Batholith and potentially associated 
with some younger intrusions that are part of the 
Abitagua Batholith itself (Aspden and Litherland, 
1992). Due to the field limitations, the use of indirect, 
geophysical methods was encouraged.

Seismic tomography is a geophysical technique 
useful for imaging the subsurface of the Earth in 
three dimensions using seismic waves from natural 
earthquakes (e.g., Thurber and Ritsema, 2007; 
Romanowicz, 2021). Some notable examples where 

1. Introduction

Ecuador is a country located in a convergence 
zone between the Nazca oceanic plate and the South 
American continental plate. This subduction process 
began in the Early Jurassic, resulting in continental-
scale deformation, as well as increased seismic and 
volcanic activity (e.g., Michaud et al., 2009; Bilek, 
2010; Schütte et al., 2012). Subsequently, the extensive 
calc-alkaline continental arc of Misahuallí developed 
in the Middle Jurassic, accompanied by the intrusion 
of type I batholiths (e.g., Aspden et al., 1992).

The Abitagua Batholith (Fig. 1) was first described 
by Colony and Sinclair (1932) while studying 
igneous and metamorphic rocks in eastern Ecuador. 
It represents a relatively understudied area due to its 
difficult access and location along protected zones: 

FIG. 1. Regional map: location of the study area within the Sub-Andean Zone of Ecuador. Local map: morphotectonic scheme adapted 
from Litherland et al. (1994), showing the Loja and Salado terrains and the Amazonian Craton, with the Abitagua Batholith in 
between. The tomography sections performed in this study are marked with dashed lines. Sections AA’, BB’, CC’, DD’, EE’, FF’ 
have an azimuth of  N90E, while section GG’ has an azimuth of  N25E. The purple rectangle depicts the area of horizontal cuts.
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this technique was used included: the description of 
the upper crust beneath the Chalupas caldera (Paredes 
and Araujo, 2021), the geodynamic impact due to 
the subduction of the Nazca plate beneath Ecuador 
(Araujo et al., 2021), and the location of a weathering 
front around a granite (Wang et al., 2019).

The objective of this study is to provide a 
regional characterization of the Abitagua Batholith 
by applying three different seismic velocity models 
(Vp, ΔVp, Vp /Vs) derived from the inversion of 
travel time data provided by Ecuadorian survey 
networks RENSIG (Red Nacional de Sismógrafos 
del Instituto Geofísico), RENAC (Red Nacional de 
Acelerógrafos), and ROVIC (Red de Observatorios 
Vulcanológicos), as well as some stations of the 
Colombian Geological Service near the border with 
Ecuador. In doing so, structures indicative of potential 
fluid escape pathways during magmatic intrusion 
can be recognized at depth. These structures can be 
related to the gold-bearing intrusions theorized to 
be the source of alluvial gold currently exploited 
on the banks of the rivers that drain the batholith.

2. Geological context

The Sub-Andean Zone of Ecuador is part of the 
Amazon Basin (Fig. 1). It is structured by reverse 
faults with a ~N-S orientation (Bès de Berc et al., 
2004) consequence of tectonic inversion related to the 
Late Triassic-Early Jurassic Tetian rift system (Baby 
et al., 2004). The Sub-Andean is divided into three 
morphotectonic units: the Napo Uplift, the Pastaza 
Depression, and the Cutucú Range (Bès de Berc                                                             
et al., 2004; Fig. 1).

The Abitagua Batholith is part of the Sub-Andean 
Zone (Fig. 1). It lies to the east of the Cosanga Fault 
(Litherland et al., 1994). Petrographically, it has been 
described as a rose-colored biotite monzogranite, 
ranging from medium- to coarse-grained to megacrystic 
K-feldspar-rich (Aspden et al., 1992; Litherland et al.,                                 
1994). It constitutes part of the basement of the 
Sub-Andean Zone and represents the highest non-
volcanic relief in the region, with an elevation of 
~2,700 m a.s.l. The batholith measures ~120 km                                                                                          
long and ~12-15 km wide (Litherland et al., 1994; 
Fig. 1).

The age of the Abitagua Batholith is reported 
between 178±7 Ma (K-Ar-biotite; Herbert and Pichler, 
1983) and 173±1.3 Ma (U-Pb-zircon; Spikings et al., 

2015), so it is well constrained to the Middle-Late 
Jurassic transition, being therefore part of the intrusive 
suite of the Misahuallí arc (Romeuf et al., 1995). The 
geochemical composition of the batholith indicates 
it is a type-I granite, related to other intrusive bodies 
nearby such as the Zamora and Rosa Florida batholiths 
(Hall and Calle, 1982; Aspden et al., 1992; Litherland 
et al., 1994), and consequence of a change in the 
subduction dynamics since the Middle Jurassic in the 
region (Jaillard et al., 1990; Litherland et al., 1994).

3. Methodology

3.1. Stations and data

The tomography model used in this study was 
obtained from Araujo et al. (2021). These authors used 
data from 66 stations from the RENSIG seismometer 
network, 100 stations from the RENAC accelerometer 
network, and 85 stations from the monitoring networks 
installed around the Ecuadorian volcanoes (ROVIG), 
besides shared seismic data from the Colombian 
Geological Service (14 stations). These networks 
have operated digitally since 1988 and provide an 
extensive seismic database on Ecuador. The data 
period ended in April 2016, before the Mw 7.8 
earthquake in the subduction zone north of Ecuador. 
From the seismic tomography study by Araujo et al. 
(2021), no new models of seismic velocities have 
been developed in our area of ​​interest. 

The 265 stations used to obtain the velocity models 
from are shown in figure 2. Araujo et al. (2021) 
obtained a velocity model for a ~6° x 5° area (large 
rectangle in Fig. 2), with depths of up to 240 km.                                             
The area of the Abitagua Batholith is much smaller 
(inner rectangle in Fig. 2). Although there is not a high 
density of stations in the study area, the resolution 
of the model is relatively high due to the intense 
seismic activity recorded between 1988 and 2016 
(Fig. 2). In consequence, 58,060 seismic events were 
thus manually retrieved (Fig. 2), with 641,036 and 
215,134 arrival times calculated for P and S waves, 
respectively (Araujo et al., 2021).

The a priori model from which the tomography 
process was based considered a one-dimensional 
model for the P-wave velocity with no prior geometry 
imposed on the crust or the Nazca slab (Araujo        
et al., 2021). The a priori model for the S wave 
was then obtained by using the relation Vp /Vs= √3.
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3.2. Tomography software 

The velocity models of Araujo et al. (2021), 
and used in this study, were obtained through the 
INSIGHT software (Potin, 2016). This software was 
developed to solve seismic tomography problems in 
the crust and upper mantle and is based on a stochastic 
resolution of the inverse problem (e.g., Tarantola        
and Valette, 1982; Valette, 2012). 

In the stochastic resolution of inverse problems, 
the data d and the model parameters m are random 
vectors that maintain a functional relationship           
g: d=g(m). This approach quantifies the parameter 
information with a measure expressed through 
probability distribution functions. The data vector d 
contains information on the P-wave arrival times and 
the S-to-P wave travel time difference as dP=tP  and 
dS-P=tS-tp, respectively. On the other hand, the model 

FIG. 2. Seismic data from Araujo et al. (2021) and used in this study. The gray triangles represent the seismic stations. The seismic 
events are on a color scale for different depths: red, <35 km; yellow, 35-75 km; blue, 75-150 km; and black, 150-250 km.         
The outer rectangle shows the region where the model was solved. The inner rectangle shows the area of ​​the Abitagua Batholith.
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vector m is composed of parameters obtained after 
the inversion algorithm, namely: P-wave velocities 
(vp ), the ratio between P- to S-wave velocities                    
(Vp /Vs), seismicity hypocenters (x), earthquake origin 
times (t0 ), and seismic station time delays (ΔP, ΔS-P ). 

The errors in the data are expressed in the 
covariance matrix Cd , and those of the model 
parameters are described in the matrix Cm. The 
functional relationship takes the form of the matrix 
G. Then, the seismic tomography software INSIGHT 
solves this linear system at each iteration k (Eq. 1):

  	
(1)  mk+1-mk=(A*

k  Ak )-1(A*
k vk )

Where:      and  
           
Araujo et al. (2021) obtained the velocity model 

by using a grid of 5 km in the horizontal direction 
and 2 km in the vertical direction. This model was 
resolved over the entire region of Ecuador and gave 
a total of 2,342,515 inversion nodes. For the errors 
of the inversion parameters, they took initial values ​​
of 0.75 km/s for Vp, 0.15 for Vp/Vs, 30 km for the 
event locations (in any direction), and 1,000 s for 
the origin time of the earthquakes. The parameters 
governing the inverse problem’s regularization 
define a damping length and a smoothing length. The 
optimal values ​​of these parameters were found by 
using the L-curve method, resulting in 6 and 35 km 
for the damping and smoothing lengths, respectively.

After resolving the inverse problem with INSIGHT, 
the final data set comprised 335,498 P- and 111,457 
S-wave arrival times. Thus, the number of seismic 
events was reduced from 58,060 to 25,410 (Araujo 
et al., 2021).

3.3. Resolution tests

In this study, we used the resolution operator 
criterion (Vergely et al., 2010) to determine the 
spatial resolution of the velocity models of Araujo 
et al. (2021) in the Abitagua Batholith area. This 
technique quantifies how well the inversion solution 
fits the model features and allows regularization 
control to obtain more physically stable solutions.

For the stochastic solution (Valette, 2012), the 
resolution operator R is calculated as (Eq. 2):

              

(2)  R=I-(AA*)-1Cm
-1

If the grid size of the inverse problem is vast, 
it is not practical to calculate the operator R at all 
grid points. Instead, the restitution index (RI) is far 
preferable. RI is defined as an average of R for the 
parameter p at a given point  (Vergely et al., 2010). 
The parameter p, in our case study, is the value of 
the seismic wave velocity at a point of the resolution 
grid. The average of R is calculated over the points  
around  (Eq. 3):

(3)  RIp(xi)=∑jR(p(xi),p(xj))

RI approaches unity when the parameter p reaches 
the actual value of velocity, which indicates the good 
resolution of the model. On the contrary, when p is 
far from the actual velocity value, RI leans towards 
zero, indicating poor resolution (Vergely et al., 2010; 
Valette, 2012).

The model resolution results are shown in figure 3 
along some of the profiles from Figure 1. In general, the 
resolution is high in the Abitagua Batholith area. The 
minimum RI is 0.84 and the maximum even reaches 
the value of unity (Fig. 3D). This high resolution is 
explained due to the significant seismicity recorded 
in the area for the 1988-2016 period (Fig. 2).

3.4. Tomography cross-sections

The cross-sectional cuts were generated in Matlab. 
The sections use riverheads as references, and from 
north to south they are (Fig. 1): Mulatos River- 
Jatunyaku River (FF’), Illocullín River (EE’), Piatúa 
Blanco River (DD’), Piatúa River (CC’), Chontayacu 
River (BB’), and Yurak Yaku Grande River (AA’). 
All sections have a length of 40 km and a depth of         
70 km with an azimuth of N90E, aiming to distinguish 
the Abitagua Batholith from surrounding lithologies 
(Fig. 1). An additional, oblique profile was created 
to observe changes along the internal structure of the 
batholith. This last profile has a length of 120 km                                                                
and a depth of 70 km with an azimuth of N25E 
(Fig. 1). The horizontal cuts were performed within 
the quadrant [78.26° W 1.59° S 77.60° W 0.55° S] 
in order to observe the velocity changes related to 
different terrains (Fig. 1).

The design software must define the interpolation 
length to draw the tomography images. For this 
smoothing length, we chose 0.3 km in vertical and 
horizontal directions. A file containing the seismic 
event hypocenters resulting from the tomography 
inversion was also provided.
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4. Results and discussion

The tomography results are presented in           
figures 4-7. Vertical sections AA’, BB’, and CC’ are 
shown in figure 4. Sections DD’, EE’, and FF’ are 
in figure 5, and section GG’ is shown in figure 6. 
The horizontal section is depicted in figure 7. Each 
section presents results from the relative P-wave 
velocity model (ΔVp), absolute P-wave velocity 
model (Vp), and the ratio between P-wave and 
S-wave velocities (Vp/Vs). Additionally, all figures 
include the seismic events occurring within 12 km 
perpendicular to the tomography cuts. 

The ΔVp model illustrates variations in P-wave 
velocity across the tomography cross-sections. Seismic 

anomalies (positive and negative) in this model are 
presented in percentage form and may be indicative of 
crustal structures, such as lithological discontinuities 
(Koulakov, 2012, 2013; Pávez et al., 2016; Vargas                     
et al., 2017). In consequence, all tomography profiles 
were overlaid with the morphotectonic segmentation 
of Litherland et al. (1994) to correlate the Abitagua 
Batholith with the metamorphosed Salado Terrain 
to the west and the Amazonian Craton to the east.

The ΔVp model results for sections AA’, BB’, 
CC’, DD’ (Figs. 4 and 5) show a surface variation of 
ΔVp ranging from -5 to -15% and lower. Neither of 
these anomalies allow the Abitagua Batholith to be 
recognized. However, by overlying the geological 
map by Egüez et al. (2017), it is possible to define its 

FIG. 3. Cross-sections of the RI value in the study area. The sections correspond to those indicated in figure 1. The RI value is    
represented with a color scale and isocontour lines. The vertical and horizontal scales are in kilometers.
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FIG. 4. Seismic model results: ΔVp (in percentage form), Vp (km/s), and Vp/Vs (dimensionless) along sections A: AA’, B: BB’, and 
C: CC’ (see section location in Fig. 1). Along the surface, the main morphotectonic units (after Litherland et al., 1994) are 
indicated. Some relevant anomalies (dotted contours) and seismic event hypocenters (blue dots) are also shown.
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FIG. 5. Seismic model results: ΔVp (in percentage form), Vp (km/s), and Vp/Vs (dimensionless) along sections A: DD’, B: EE’, and    
C: FF’ (see section location in Fig. 1). Along the surface, the main morphotectonic units (after Litherland et al., 1994) are 
indicated. Some relevant anomalies (dotted contours) and seismic event hypocenters (blue dots) are also shown.
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boundaries within the  models. Therefore, we propose 
the region enclosed between -10% ≥ ΔVp ≥ -15% 
delineates the Abitagua Batholith with a horizontal 
extension of approximately 12 km, which is the 
average size reported in Litherland et al. (1994). The 
-15% isoline marks the contact with the Amazonian 
Craton, while the -10% isoline indicates the contact 
with the metamorphosed Salado Terrain. 

In sections EE’ and FF’ (Fig. 5A, B) the surface  
values are distributed from -10 to 0%. It is worth 
to notice that  velocities within the area where the 
Abitagua Batholith is located according to profiles 
AA’ to DD’ vary when compared to those shown in 
Figure 4. In fact, after loading the Egüez et al. (2017) 
map, the Abitagua Batholith would be represented                                                                                                    
by -5% ≥ ΔVp ≥ -7% in section EE’ (Fig. 5B). 

FIG. 6. Seismic model results. A: ΔVp (in percentage form). B: Vp (km/s), C: Vp/Vs (dimensionless). The intersection of the profiles 
AA’ to FF’ is marked with black arrows. In A, the regions of lower and higher rock compaction are shown by blue segmented 
curves. In B, black segmented curves refer to two seismic anomalies, with potential fluid migration pathways depicted as black 
arrows. Seismic event hypocenters (blue dots) are also shown.
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Likewise, in the FF’ section (Fig. 5C), the 0% curve 
would delineate the contact with the Salado Terrain, 
from which a wedge with respect to the Abitagua 
Batholith along the Cosanga Fault can be interpreted, 
similar to the geological section shown in Litherland 
et al. (1994).

There is an increase in the ΔVp along the surface 
of the batholith from section DD’ (ΔVp < -10%) 
to section FF’ (-5% ≥ ΔVp ≥ 0%) (Fig. 5). This 
longitudinal velocity variation is evident in the  model 
of section GG’ (Fig. 6) and in the horizontal cuts 
(Fig. 7). The negative ΔVp anomalies in section GG’ 

FIG. 7. Map view tomography cross-sections. A and B show the absolute Vp model. C and D show the relative P wave velocity model. 
Sections A and C were obtained 0.5 km below the geoid while sections B and D 3 km below the geoid. The boundaries of the 
Salado Terrain, the Abitagua Batholith, and the Amazonian craton are shown as black lines.
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represent areas where the structure of the batholith 
is less compact, indicating a zone where the rock is 
fractured (Martí et al., 2002; D’Auria et al., 2022).    
In contrast, the positive anomalies in the same section 
are due to the presence of more consolidated rock, 
which causes an increase in the absolute and relative 
values of P-wave velocity (Fig. 5A, B).

The absolute P-wave velocity values increase 
with depth in all profiles (Figs. 4, 5, 7B). The depth 
of the Abitagua Batholith can be estimated based on 
the  values for granites (4.6-4.8 km/s for weathered 
or fractured granites and 5.3-5.5 km/s for fresh, 
unfractured granites; Gelbke et al., 1989; Martí         
et al., 2002). From sections AA’ to EE’, the average 
depth of the batholith is at around 10 km (Figs. 4, 
5A, 5B), while in section FF’ it decreases to about                              
2 km (Fig. 5C). This thinning is evident in Section GG’ 
north from section FF’ (Fig. 6B). At greater depths 
(higher Vp values), a structure that could represent 
the root of the intrusive is inferred at around the    
6.8 km/s isoline at around 35 km depth.

In the Vp model result profiles, north from 
section CC’ there is a sudden increase in the number 
of seismic events recorded (Figs. 4C and 5). This 
rise in seismicity would be related to the seismic 
cluster of Pisayambo described in Araujo et al. 
(2009), located within the quadrant [78.5° W 1.3° S     
78.0° W 0.9° S] and classified as the most active of 
the four seismic nests detected in Ecuador (Araujo 
et al., 2009; Araujo, 2012). The Pisayambo cluster 
is associated with an unknown fault segment of the 
Chingual-Cosanga-Puná-Pallatanga fault system 
(CCPP), later named as the Pisayambo Lagoon Fault 
(PLF) by Champenois et al. (2017).

In the map view sections, the 0.5 and 3 km depth 
slices show the ΔVp transition zone that separates 
weathered from fresh rock (Fig. 7C, D). To the west, 
the Salado Terrain is characterized by positive ΔVp  
anomalies, consistent with those reported in Paredes 
and Araujo (2021). The Amazonian Craton, on the 
other hand, exhibits a pattern of positive ΔVp values 
in the north and negative in the south, similar to the 
batholith.

The Vp/Vs model results can be used to determine 
the crustal architecture associated with volcanoes and 
shallow intrusions (e.g., Hua et al., 2019). At greater 
depths, on the other hand, the S-wave velocity values 
are typically low in the presence of partial melts, 
so the Vp/Vs ratio is directly affected, resulting in 
higher ratios sometimes associated with the presence 

of magmatic reservoirs (Koulakov, 2012, 2013; 
Ferri et al., 2016; Vargas et al., 2017; Yang et al., 
2023). In the profiles obtained in the present study, 
it is possible to observe a Vp/Vs anomaly at around 
1.77-1.79, at ~45 km depth and below (Figs. 4 and 5).                   
This distribution is more evident in section GG’ 
(Fig. 6C), in which even a second anomaly can be 
observed. The first one locates below sections AA’ 
to FF’ between ~40-60 km depth, while ~80 km to 
the north, a second, much larger anomaly encloses  
Vp/Vs ratios above 1.8.

Model results suggest that the high Vp/Vs 
anomalies are correlated with basaltic melts generated 
in the mantle, which can ascend and stagnate at 
the boundary between the mantle and the crust 
(Koulakov, 2012, 2013; Ferri et al., 2016). In this 
location, magmatic processes such as fractional 
crystallization, crustal assimilation, and magma 
mixing can take place as well (e.g., Zhao et al., 2019; 
Bugueño et al., 2022). Additionally, in volcanic 
terrains, the seismicity around these anomalies 
is generally attributed to magma movement and 
hydrothermal fluid ascent mechanisms (Poli and 
Schmidt, 1995; Koulakov, 2013; D’Auria et al., 2022; 
Yang et al., 2023). The migration of hydrothermal 
fluids containing metals results in the deposition of 
minerals through effective precipitation mechanisms 
(e.g., Stoffell et al., 2004; Zhao et al., 2019; Zhang 
et al., 2021; Bugueño et al., 2022). The interaction 
between intrusions and hydrothermal fluids results 
in porphyries rich in Au and Cu (Zhao et al., 2019; 
Bugueño et al., 2022). After shallow emplacement 
followed by weathering and erosion, fragments 
of these mineralized bodies are transported and 
deposited in nearby rivers, generating alluvial 
gold deposits.

Based on the seismicity observed between the 
AA’ and BB’ sections (Fig. 4A, B), the ascent of 
fluids from the ~1.8 Vp/Vs anomaly is suggested. 
Similar patterns can be observed in the CC’ and DD’ 
sections (Figs. 4C and 5A). These fluids sometimes 
result in mineral-laden intrusions, and would explain 
the presence of gold in rivers and streams around the 
Yurak Yaku Grande River (Aspden and Litherland, 
1992) and the Napo River (Barragan et al., 1991). 
On other hand, in the GG’ section, the transition zone 
between positive and negative  values falls ~5 km 
north from the Jatunyaku River (FF’ profile) (Fig. 6A). 
In this same section, the Vp/Vs model combined with 
hypocenter locations (Fig. 6C) may be indicative of 
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potential fluid escape pathways from two magmatic 
reservoirs. At shallow depths, both pathways seem 
to converge around the mentioned transition zone. In 
this place, alluvial gold deposits have been reported 
(Barragan et al., 1991; Aspden and Litherland, 1992), 
with their origin probably from still unexplored, 
post-Abitagua porphyry-type intrusions.

5. Conclusions 

Seismic velocity models in the Abitagua Batholith 
area, central Ecuador, report a transitional zone from 
positive to negative ΔVp values ~5 km north from 
the Jatunyaku River. This zone would be the place 
where potential post-Abitagua mineralized intrusions 
are more likely. 

According to the Vp/Vs model results, two seismic 
anomalies were determined at depths of >40 km 
beneath the Abitagua Batholith, associated in this 
study with magmatic reservoirs at the mantle-crust 
interface. When combined with seismic hypocenter 
locations, magma ascent pathways are inferred, 
which at shallow depths seem to converge at the  
ΔVp transitional zone.

If confirmed, these potential intrusions could be 
the source of the alluvial gold documented in several 
rivers that drain from the batholith. A more robust 
seismic network around the batholith area would 
therefore be necessary to improve model resolutions 
and test the presence of these gold-bearing intrusions 
at local scales.
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