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ABSTRACT. The environment of the Andean Puna Plateau is mostly characterized by the dominance of evaporative 
processes due to aridity. Since the intermittent runoff lacks the morphodynamic competence to generate the present day 
landscape, authors have usually considered that the Puna landscape is a remnant feature of the Miocene arid-climate 
persistence. Then, a Quaternary-sensu lato-age was assigned to salars, alluvial fans and other geomorphologies. We 
present evidences from the endorheic depression of Guayatayoc-Salinas Grandes (GSG) located at 3,400 m a.s.l. in the 
eastern border of northen Puna. The basin includes a saline playa domain in the north (Guayatayoc Playa Lake) and a salt 
pan in the southern part (Salinas Grandes). We have identified two dissimilar processes originating the subdivision of the 
GSG depression. The characterization of those processes included sedimentological and geomorphological observations, 
as well as chronologies using luminescence and radiocarbon. Evidences reveal the development of a saline-lacustrine 
water body that is associated with the Last Glacial Maximum. During the Late Pleistocene and until ~13.8 cal kyr BP, 
lake shores were modelled in the front of distal-alluvial fans, the sedimentary aggradation was widespread, and associ-
ated with kaolinitic-clay accumulation, inyoite, and the formation of peat-deposits. An environmental change towards 
aridity occurred after 13.8 cal kyr BP, and wetter conditions returned during the early to middle Holocene, around                       
9 cal kyr BP. Then, incisive river dynamics accompanied the establishment of a playa lake, with montmorillonitic-fine 
sediments and ulexite generation during later Holocene. The subdivision of the GSG depression onset by the two fol-
lowing processes: 1. the topographic decoupling, that is associated with Las Burras’s alluvial fan aggradation during 
Pleistocene; 2. the lacustrine regression phase at 13.8 cal kyr BP. Therefore, Guayatayoc and Salinas Grandes are saline 
systems functioning as a playa lake and a salt pan, respectively, since the Holocene, due to environmental constraints.

Keywords: Andes, Quaternary, Playa lake, Salar. 
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1. Introduction  

A Quaternary sensu lato age has been assigned 
to salars, alluvial fans and other geomorphological 
features in the Puna. It has been usually considered 
that the Puna landscape is a remnant feature of the 
arid climates established in the region since Miocene 
(Alonso, 2006). The aridity in the Puna is actually 
controlled by the orography that constitutes a physical 
barrier to the humid atmospheric circulation coming 
from the Atlantic. The arid and evaporative climate 
in the Andean Puna causes intermittent runoffs. 
These ephemeral runoffs lack the morphodynamic 
competence to generate the present day landscape, 
that includes un-incised fresh morphologies such 
as extensive alluvial fans as well as paleoshorelines 
modelled on the periphery of numerous salars (Abril 
and Amengual, 1999). 

The study area involves an endorheic system 
located at 3,400 m a.s.l., in the eastern border of 
northern Puna, Argentina (Fig. 1A). The altitude 
determines temperatures with daily amplitude (18 °C)                                                                                 
larger than annual (annual mean 8 °C). Annual 
rainfall concentrates in summer (300 to 400 mm) 
and defines a negative hydrological balance more 
than 10 month per year, and a relative humidity of 
47% (Bianchi, 1981; Buitrago and Larran, 1994).  

The lacustrine system (GSG) includes a saline 
playa domain in the north (Guayatayoc playa lake) 

and a salt pan in the southern part (Salinas Grandes) 
separated by Las Burras alluvial fan (LB). The GSG 
is the end point for the hydrological discharges of 
this endorheic system (Fig. 1A).

The present contribution characterizes envi-
ronmental processes in the GSG during the late 
Quaternary. Environmental processes related to the 
basin evolution led to the establishment of the two 
present day sub-basins, Salinas Grandes as a salt pan 
(chemical-agradative domain) and Guayatayoc as a 
playa lake (clastic-agradative domain). Our study 
also contributes in a more regional scale, to better 
understand the variability of the upper Quaternary 
climate and its geomorphic influence under arid 
settings.

2. The Pleistocene-Holocene transition in the Andes

During last decades, multiples studies have 
analyzed Quaternary formations in the Andean high 
plateau (Ballivián et al., 1978; Servant and Fontes, 
1978; Servant Vildary, 1978; Veit, 1994; Argollo 
and Murguiart, 1995; Argollo, 1996; Abbott et al., 
1997; Argollo, 2000; Zreda et al., 2001; Cross et al., 
2001; Paduano et al., 2003; Servant and Servant-
Vildary, 2003; Fritz et al., 2004; Mayewski et al., 
2004; Grosjean et al., 2007; Zech et al., 2009b). 
The paleohydrological evolution of basins located 
in the NW Argentine Andes has been evaluated by 

RESUMEN. Cambio hidrológico asociado al Último Máximo Glacial-Altitermal  durante la transición Pleistoceno-
Holoceno en el borde oriental de Puna Norte. Las condiciones ambientales de la Puna andina se caracterizan por la 
aridez y el dominio de procesos evaporativos. Debido a que las escorrentías intermitentes carecen de competencia mor-
fodinámica para la generación del paisaje actual, los autores generalmente han considerado que el paisaje puneño es una 
característica remanente de la persistencia de la aridez miocena y asignaron una antigüedad cuaternaria sensu lato a los 
salares, abanicos aluviales y otras geoformas. Presentamos evidencias obtenidas en la depresión endorreica Guayatayoc-
Salinas Grandes (GSG), situada a 3.400 m s.n.m., en el borde oriental de la Puna Norte de Argentina. La cuenca incluye 
un dominio de barreal salino al norte (‘playa lake’ Guayatayoc) y un salar al sur (Salinas Grandes), relacionados con 
procesos que generaron la subdivisión de la depresión GSG. La caracterización de tales procesos incluye observaciones 
sedimentológicas y geomorfológicas, así como cronologías mediante luminiscencia y radiocarbono. Las evidencias revelan 
la existencia de desarrollos lacustres asociados al Último Máximo Glacial. Durante la última parte del Pleistoceno y hasta 
hace unos 13,8 cal ka AP, las riberas lacustres se modelaron en los frentes distales de los abanicos aluviales y la agradación 
sedimentaria fue generalizada, asociada con la acumulación de arcillas caoliníticas, inyoita y depósitos turbosos. Un cam-
bio ambiental hacia condiciones de aridez fue registrado después de 13,8 cal ka AP, pero las condiciones de humedad se 
establecieron nuevamente durante el Holoceno inferior a medio, desde 9 cal ka AP. La dinámica incisiva fluvial acompañó 
el establecimiento del ambiente de playa lake en el cual se generaron sedimentos montmorilloníticos y ulexita durante el 
Holoceno superior. La subdivisión de la depresión GSG se dio mediante dos procesos: 1. la desvinculación topográfica, 
asociada a la agradación del abanico Las Burras durante el Pleistoceno; 2. la retracción lacustre alrededor de 13,8 cal ka BP.                                                          
En consecuencia, Guayatayoc y Salinas Grandes son sistemas salinos que funcionan como un ‘playa lake’ y un salar, 
respectivamente, desde el Holoceno y cuya génesis obedeció a condicionantes ambientales.

Palabras clave: Andes, Cuaternario, Playa lake, Salar. 



3López and Galli. / Andean Geology 41 (2): 1-19, 2015

Godfrey et al. (1997), Trauth and Strecker (1999); 
Valero Garcés et al. (2000); Godfrey et al. (2003); 
Trauth et al. (2003) and McGlue et al. (2012). 

In northern Puna, arid conditions would have 
been persistent during most of the Pleistocene (Abril 
and Amengual, 1999) until 150 cal kyr BP (Fritz 
et al., 2004). Since 150 cal kyr BP environmental 
conditions changed with the occurrence of some 
cooler and more humid phases accompanied by 
glacial (Zipprich et al., 1999; Zech et al.; 2009a) 
and lacustrine (McGlue et al., 2013) activity in the 
eastern border of northern Puna.  

Cold-humid conditions characterizing the Upper 
Pleistocene would persist during the Early and even 
middle Holocene, and the present-arid environment 
could have developed by middle to upper Holocene 
(Sayago and Collantes, 1990; Lupo, 1998; Kulemeyer, 

2005; Yacobaccio and Morales, 2005; Tchilinguirian 
et al., 2012). 

The morphodynamic sequences in the GSG depres-
sion were previously associated with middle-upper 
Pleistocene climate conditions (Abril and Amengual, 
1999). Sedimentological studies of the playa deposits 
in Guayatayoc (Reverberi, 19681) documented the 
presence of lacustrine facies in the area.  

3. Methods

The measured and described sedimentological 
profiles includes: 1. Las Burras alluvial fan deposits; 
2. the shorelines deposits in the distal part of the 
Tusaquillas alluvial fan; and 3. the terraces in val-
leys located in the southeastern margin of the basin 
(Fig. 1A). 24 pits were dug in the Guayatayoc playa 

FIG. 1. Location map of the GSG area and the sampled sites. A. The studied area includes the Guayatayoc playa lake and the Salinas 
Grandes which are separate by Las Burras alluvial fan; B. Pits location for the playa lake-sampling in Guayatayoc.

1 Reverberi, O.V. 1968. Contribución al estudio de los yacimientos de boratos de Argentina. Laguna Guayatayoc. Departamentos Cochinoca y Tumbaya. 
Provincia de Jujuy. Reporte técnico (Unpublished), Instituto Nacional de Geología y Minería, Subsecretaría de Minería y Combustibles: 70 p. Jujuy. 
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lake (Fig. 1B) up to a depth limited by the brine-
water table. Sections were described, sampled and 
collected in the pits. 

Mineralogical compositions were analyzed using 
optic microscopy, scanning electron microscopy, 
diffraction and fluorescence of  X-rays. Microfossils 
were observed under optic and scanning electron 
microscopy, and taxonomies were identified by 
comparison with local references using published 
taxonomic keys (Seeligmann et al., 2008). 

In order to estimate the basal age of the LB deposit, 
we have considered a sedimentation rate (mm/yr) 
based on 1. two Optically Stimulated Luminescence 
(OSL) dates, 2. thickness of the alluvial fan using 
a 2D migrated seismic reflection line. For the LB 
profile location, the static seismic correction proce-
dure erased the weathered seismic-sequences until 
350 DTS (Double Time Seconds). These weathered 
seismic-sequences were assimilated to the upper 
Quaternary deposits of the LB alluvial fan (López 
Steinmetz, 2013).

Chronologies (Table 1) were established using 
two different dating techniques. Optically stimulated 
luminescence: samples were collected using PVC 
cylinders with 50 mm in diameter and 30 cm in length 
that were push-hammered into the freshly cleaned 
vertical section and immediately covered with a lid. 
In laboratory (Laboratorio de Luminiscencia, Uni-
versidad de la República, Uruguay), the two ends of 
the samples in the cylinders were first removed and 
collected for estimation of environmental dose rate. 
Quartzitic sand-sized grains and polymineral fine 
fractions were isolated by chemical, magnetic and 
heavy liquid-flotation. Reading was performed using 
the thermoluminescence multiple-aliquot protocol 
(MAA), and monitoring feldspars by the infrared 
stimulated luminescence (IRSL). Radiocarbon ages: 
peat and carbonate samples pretreatment and dating 
were performed at the LATYR Laboratory of the 

Universidad de La Plata, followed by conversion 
of carbon-14 dates (14C yr BP) to calendar ages (cal 
yr BP) using CALIB 6.0.1 (Southern Hemisphere 
calibration curve SHCal04) (McCormac et al., 
2004; Stuiver et al., 1998). Considerations about 
reservoir effects for radiocarbon dates are set forth 
in the discussion.

4. Results

4.1. Las Burras alluvial fan

Las Burras alluvial fan is an un-incised geo-
morphological unit. The access to its sedimentary 
deposits is restricted to a few quarries. The expo-
sure Las Burras (LB, 23°30’59.2”S, 66°00’00”W,        
Fig. 1A) is a 6 m thick deposit formed by polimictic 
sandy conglomerates, with subrounded Ordovician 
quartzitic clasts, up to 60 cm wide. The quartzitic 
sandy matrix was sampled (LB1 y LB2), at 6 m and 
4 m from the top of the alluvial fan surface for OSL 
dating. The age results are 76,335±7,000 yr BP and 
32,022±3,000 yr BP (Table 1). 

According to these chronological results, the 
range of the weathered seismic-sequence (erased 
from seismic data by the static correction procedure) 
and the altitude of both, the seismic data and the 
LB profile, we considered that the thickness of the 
alluvial fan could reach ~170 m in the position of 
the LB section (Fig. 2). 

4.2. Tusaquillas alluvial fan

The distal deposits in the Tusaquillas alluvial 
fan (Fig. 1A) were sampled in hand-dug trenches. 
A1 (2.3 m thick) and A2 (1.60 m thick) are located 
in the northwestern side of the Guayatayoc playa 
lake (23°14’47”S, 65°57’13.1”W and 23°13’11.7”S, 
65°55’46”W, respectively). 

TABLE 1. DETAIL OF THE 14C AND OSL DATED SAMPLES.

Sample Laboratory Lab Code Method Material Age

LB1 Laboratorio de Datación por 
Luminiscencia, Universidad 
de la República, Uruguay

LB - TLD-UNCIEP-
UY-00100

OSL
quartz 32,022±3,000 yr

LB2

LB1 - TLD-UNCIEP-
UY-00101 quartz 76,335±7,000 yr

ElCo LaTyR, Universidad 
Nacional de La Plata, 
Argentina

ElCo M2 DAT
14C

peat 9,050±80 cal yr BP

SS6 SS6M6 carbonatic crust 13,840±180 cal yr BP
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The lower part of the hand-exposed fill-cut starts 
with bioturbated green clays and it is followed by 
brown-yellow sands and white-gray silt. The upper 
part contains peat deposits mixed with silty-clays, 
and 10 cm long inyoite (Ca2B6O11 . 13 H2O) crystals. 
The top of the sequence is composed by interstrati-
fied alluvial sands and gravels (Fig. 3).   

Coarse A1 and A2 sediment contain clastic grains: 
spherical-detrital fragments are abundant as well as 
quartz, biotites and plagioclase (Fig. 4A); however, 
the matrix is a fine, diatomaceous silty-clay (Fig. 4B). 
Morphologically identified taxa include Anomoeoneis 
sphaerophora fa. costata Kützing, Planothidium sp., 
Surirella angusta Kützing (Fig. 4C) and Surirella sp.                          
(Fig. 4D), posibly Surirella chilensis Janish (Seelig-
mann et al., 2008).

4.3. Guayatayoc Playa Lake 

The Guayatayoc playa (Fig. 5A) is covered by 
a light brown salty crust due to the mixture of the 
evaporative halite in the surface and the underlying 
brown silty-clays (Fig. 5B). Below, green clays 
reached an unknown thickness that is at least greater 
than 1.7 meters. 

Sediments are composed by clastic fragments, 
including tabular biotites, subangular plagioclases 
(Fig. 5C and D), fresh pumice, glass shards (Fig. 5E)        

and a brown-green diatomaceous matrix. The fol-
lowing species have been identified in the matrix: 
Surirella sp. (Fig. 5F), Surirella wetzelii Hustedt 
(Seeligmann et al., 2008), Surirella chilensis Janish 
(Fig. 5G; Seeligmann et al., 2008), Surirela angusta 
Kützing (Fig. 5H) (Fig. 6A and B). 

These clay deposits include illitic aluminous 
silicates and aluminous-kaolinitic mixtures (Fig. 6E, 
F and G). Montmorillonitic aluminous silicates rich 
in Na over Mg, possibly saponite (Mg, Al, Na) or 
montmorillonite sensu stricto (Al, Mg, Na), seems 
to be restricted to the brown silts.

The transition between the upper brown silts 
and the green clays occurs in a 10 cm interval ac-
companied by a carbonate crust and associated with 
ulexite cotton balls (Fig. 5B). The carbonate has 
provided a 14C radiometric age of 13,840±180 yr             
cal BP. Carbonate crusts occur in the northwest to 
southeast margins, and the presence of borates is 
restricted to the southeast sector whereas brown silt 
thickness increases from the central areas toward 
the edges (Fig. 7).

4.4. El Colorado terraces

Fill-cut terraces of the El Colorado (ElCo) River 
(Fig. 1A) are located in the southeastern part of the 
Guayatayoc playa lake. The considered outcrop 

FIG. 2. Correlation between the top of Las Burras alluvial fan deposit, in the LB fill-cut position, and the 267 DTS reflector in the 
seismic line.  The weightiness of the deposit could reach ~170 m in the position of LB.
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FIG. 3. The A1 and A2 fill-cuts are located in the distal parts of the Tusaquillas alluvial fan. In the A1 fill-cut (A) there are brown sands (B)                                                                      
and layered silts (D). In A2 fill-cut (E), the lower part includes brown-yellow peaty sand (F).
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(23°34’42.4”S, 65°41’25.1”O) exposes a river 
paleowetland deposit from a non-glacial valley. It 
includes a 3 km long and 12 m high exposure which 
base levels are unexposed (Fig. 8A). The basal set 
comprises 4 m of laminated fine sediments, green-
ish clays and brown silts, intercalated with black 
peat layers. A 14C date in the peat layer located at 
1.15 m from the exposed base levels yielded a 14C 
age of 9,050±80 yr cal BP. In the top, deposits are 
characterized by upward coarsening gravel-sands. 
The sub-rounded clasts are predominantly fragments 
of the Ordovician quartzites (Fig. 8B).

4.5. Present-day morphology of the GSG depression 

Three altitudinal domains have been recognized 
in the GSG endorheic depression: 1. the Guayatayoc 
playa lake is located below 3,410 m; 2. the Salinas 
Grandes salar is positioned between 3,410 and 3,415 m,                                                                                                

and 3. bordering alluvial fans are above 3,415 m                            
(Fig. 9A). In the alluvial fans surrounding the GSG, it 
have been identified at least four different paleoshore 
lines (Fig. 9B and C).

5. Discussion

5.1. Paleoenvironmental implications for the 
GSG data

The sedimentary dynamic that produced the 
decoupling of the GSG basin is related to geo-
morphological processes generated under climatic 
conditions which are not currently taking place. As 
a preliminary approach, if we use the LB Profile 
sedimentation rate (~0.05 mm/year) and apply it to 
the total thickness of the alluvial fan, the basal age 
for this formation would reach the middle Pliocene 
(about 3.7 Ma).

FIG. 4. Photomicrographs of the A1 (A, B) and A2 (C, D) fill-cut samples. Sediments are characterized by sandy textures with detrital frag-
ments (A, 2X) in which the matrix is fully diatomaceous (B, 10X). Siliceous matrix contains many diatom valves (C and D, 40X).
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The southward predominant development of  Las 
Burras alluvial fan indicates that the alluvial system 
mainly flowed towards Salinas Grandes (3,410 m a.s.l.)                                                                                                   
during Pleistocene. The river channel later turned 
north, then Guayatayoc (3,405 m) became the final 
receiver of the basin runoff. The northward chang-
ing course of Las Burras River has determined the 
development of the evaporative environment in the 
southern part of the depression and the beginning 
of the chemical salty accumulation. Conversely, the 
northern subbasin became permanently saturated 
due to Las Burras input, then Guayatayoc changed 
into a playa lake domain. 

The northward shifting channel of Las Burras 
River may be prima facie linked to the progressive 
change in the topography outcome of the alluvial 
fan aggradation. Nevertheless, the turn north of the 
river channel could be also related to a hydrological 
regime modification. The widespread aggradation 
necessary for the formation of the LB alluvial fan 
is consistent only with more erosive capacities than 
the present day conditions. Then, the deposition of 
the alluvial fan should occur prior to the modern 
conditions lacking of geomorphic dynamic.

The paleoshore lines evidence that highstands 
(Currey and Sack, 2009) have reached up to ~10 m 

FIG. 5. The surface of the Guayatayoc playa lake contains a light-brown salty crust due to the mixture between evaporative halite 
and the underlying brown silt-clays (A). The contact between the brown silts and the green clays involves 10 cm and usually 
shows carbonatic crusts (B). Photomicrographs of samples taken from pit S6 (C, D, E, G, H) and Q1 (F); detrital green clays, 
tabular brown biotites and subangular plagioclases (C, 2X and D, 4X); valves of Surirella sp. (Surirella wetzelii Hustedt?) 
(E, 40X); fresh pumice and glass shards (F, 4X); a complete taxon of Surirella chilensis Janish (G, 40X); valve of Surirela 
angusta Kützing (H, 40X).



9López and Galli. / Andean Geology 41 (2): 1-19, 2015

FIG. 6. Photomicrographs by scanning electron microscopy of samples from pits S1 (A, B, C), S6 (D) and Q1 (H); diatom valves in 
the green clays (A-B); rosettes of borates (C); triclinic crystals of ulexite (D). X-rays diffraction of brown silts (E) and green 
clays (F), M: montmorillonite, I: illite-smectite mixture, C: kaolinite. Scanning electron microscopy analyses of brown silts 
and green clays (G). Photomicrographs by scanning electron microscopy of illite (H).
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FIG. 7. East (A), central (B), west (C) and west-east (D) axes schemes, according to pits in the Guayatayoc playa lake. Data includes 
handy digged pit deeps, presence of carbonate crust, borates and position of the dated sample. Locations of axes schemes are 
shown in figure 1B.
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high in Guayatayoc (paleoshoreline 3,415 m a.s.l.). 
At the time of formation of the highest paleoshore-
line, the Guayatayoc lake level surpassed the distal 
fan area of Las Burras and flooded Salinas Grandes           
(Fig. 9C). Consequently, the surface-separation be-
tween the two basins was sensu stricto established 
only after this post-lacustrine phase.

During the Upper Pleistocene, wet conditions 
determined that the glacier activity (Messerly, 1967; 
Rodbell et al., 2009) became widespread through the 
region (Zipprich et al., 1999; Zreda et al., 2001; Zech 
et al., 2009b). Glacier meltwater must have been a 
determining factor in regulating lake levels, so that 
deglaciations furnished necessary water volumes to 
increased lake levels. The beginning of the degla-
ciation in the Sierra de Santa Victoria occurred at 
~17 cal kyr BP (Zech et al., 2009a) after the Last 
Glacial Maximum (Shakun and Carlson, 2010). In 
Guayatayoc, this event could be represented by the 
highest paleoshoreline (3,415 m) and its associated 
highstand (Fig. 9 D). The remaining paleoshorelines 

at lower elevations would correspond to successive 
stages of melting glaciers with decreasing lake 
levels. Even though glacial activity requires wetter 
climates than present-day (Messerly, 1967; Rodbell 
et al., 2009), these lake levels could be a response 
to rising temperatures and melting glaciers without 
higher rainfall regimes (Ochsenius, 1986). 

The formation of peat deposits in El Colorado 
Terrace at around 9 cal kyr BP demonstrates the 
persistence of high humid conditions during the early 
Holocene. Non-stormy precipitations were recorded 
by the fine-organic sedimentation of the river pale-
owetland deposits in the non-glacial valley of the El 
Colorado. The development of an upward coarsening 
sequence in the top of the El Colorado terrace sug-
gests a later phase of increased erosive capacities of 
the hydrological network, which could reflect the 
gradual establishment of the seasonal monsoonal 
regime. The 12 m high fill-cutting of the El Colorado 
terrace indicates that erosive incision processes were 
dominant during the Late Holocene (Fig. 8).

FIG. 8. ElCo profile in the terrace of El Colorado River (A). The stratigraphical section (B) shows Lower Holocene laminated fine sedi-
ments, greenish clays and brown silts, intercalated with black peats. The presence of an erosive surface indicates the existence 
of a different aggradative phase which is characterized by upward coarsening gravel-sands with Ordovician quartzites clasts.
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In the GSG depression, Pleistocene green clays 
represent an expansive stage of the lake. The presence 
of a meso-euhalophile diatom flora, characterized 
by many individuals with low diversity, and the 
occurrence of kaolinitic alumino-silicates with no 
evidence of bioturbation suggests a saline-basic pH 
water body under reductive conditions.

The carbonate crust in the green clays/brown 
silts interface in the playa of Guayatayoc indicates 
the occurrence of a hydrological change towards 
hydro-deficiencies. The lacustrine retraction is as-

sociated with the beginning of the accumulation of 
montmorillonitic brown silts and the development 
of carbonatic crusts that in the pit S6 yielded an age 
of 13.8 cal kyr BP. However, this is a minimal age 
due to crusts seem to be more ancient in the rest of 
the playa lake (e.g., pits R3, T6, etc.). High spatial 
facies variability is a common feature in the evolution 
from a lacustrine to a playa system (Velde, 1992).  
The playa domain appeared early in the northern part 
of Guayatayoc and it was influenced by the alluvial 
input of the Miraflores river. The playa developed 

FIG. 9. Altitudinal domains of the Guayatayoc-Salinas Grandes depression. The playa lake is located below 3,410 m, the salar is 
positioned between 3,410 and 3,415 m and distal areas of alluvial fans reach 3,415 m (A). Lacustrine paleo-shore lines in the 
Tusaquillas alluvial fan (B) and in the eastern-border of Guayatayoc (C). During the highstand a 10 m deep lacustrine water 
body occupied Guayatayoc and Salinas Grandes (D). Figure captions were edited over digital elevation models (A and D) and 
aerial photographs (B and C).
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later in the southern part of Guayatayoc and finally 
covered the whole oriental margin. The final expres-
sion of the lacustrine body occupied the northern 
sector, coinciding with the present shallow lagoon 
formed by the Miraflores River mouth.

Inyoite were formed along the shoreline deposits 
during the lacustrine highstands. Following deglacia-
tion the environment changed towards dry conditions 
(Lupo, 1998; Kulemeyer, 2005; Yacobaccio and 
Morales, 2005; Tchilinguirian et al., 2012). Climate 
could have exerted the evaporative concentration of 
the water table. The playa lake deposits may have 
been then saturated in sodium-rich brines favouring 
the formation of the ulexite during the Holocene. 
The ulexite occurs selectively within montmoril-
lonitic sediments in the transition between the distal 
alluvial fans and the Holocene playa lake domain. 
The intra-sedimentary formation of the ulexite is 
linked to subsurface evaporative processes whereas 
the inyoite crystallization would be related to a 
gradual mineral precipitation within cold standing 
waters. In the Guayatayoc context, the distinctive 
paragenetic sequence of the inyoite-ulexite and the 
calcium borate stability at lower temperatures than 
the sodium one (Ortí, 1996), could be used as a 
relative chronological tool.

The intensification of the summer monsoonal 
regime (Trauth et al., 2003) causes seasonal flooding 
in the GSG. These regimes are in agreement with 
evidences from El Colorado terraces that indicate 
that the hydro availability during the Holocene 
was intermittent. Therefore, the establishment of 
the altithermal stage (Shakun and Carlson, 2010) 
and the dry postglacial conditions that have been 
characterizing this environment during the Middle 
to Upper Holocene until the present day seem to 
have taken place later than 9 cal kyr BP.

5.2. The GSG paleoenvironment in a regional 
context

The regional contextualization of the GSG pa-
leoenvironment requires to assess the reliability of 
the 14C chronology. The limits of this assessment are 
difficult to ascertain due to the lack of knowledge 
regarding the reservoir effect that could have the 
system on the radiocarbon dates. Radiocarbon dates 
may be significantly older than their true age of de-
position due to the long residence time of water, the 
input of volcanic thermal springs and the weathering 

of carbonate lithologies in the drainage basin. For 
example, Grosjean et al. (2001) have considered very 
large ranges (between 1 and 10 kyr) for reservoir 
effects, in agreement with the findings of Geyh et 
al. (1998) and Geyh et al. (1999). However, some 
authors (e.g., Baker et al., 2001; Abbot et al., 2003; 
Fritz et al., 2004) have not corrected ages for reservoir 
effects: 1. due to the reservoir effect for the differ-
ent paleolake stages remained undefined; 2. since 
a small reservoir effect was assumed, based on the 
little presence of carbonate rocks in the watershed; 
3. and according to the large volume of inflows 
supposed to feed lakes, that would have minimized 
the contribution of non-atmospheric carbon (Baker 
et al., 2001; Sylvestre et al., 1999).

Abbot et al. (1997) have considered that the con-
temporary reservoir effect of Lake Titicaca (250 yr) 
measured on aquatic gastropods, has been consistent 
through time for the past 3,500 yr. Nevertheless, 
Sylvestre et al. (1999) have observed that a modern 
reservoir correction cannot be applied throughout 
past time to paleolakes of lower levels than today. As 
well as for low lake level periods, a strong reservoir 
effect should be introduced in radiocarbon dates 
from groundwater-influenced systems. Conversely, 
radiocarbon ages are neither affected in fluvial en-
vironments nor lake systems during transgressive 
phases and highstands (Sylvestre et al., 1999). The 
variable reservoir effect through time was consid-
ered by Argollo and Mourguiart (2000), as well as 
large reservoir effects related to groundwaters and 
volcanic contributions of geothermal fluids have 
been detected by Valero-Garcés et al. (2000).

An opposite reservoir effect, that is a radiocar-
bon date younger than their true age, was detected 
by Jenny et al. (2002). Authors proposed that this 
younger age is related to recrystallization during 
desiccation phases. They have also observed two 
differential reservoir effect cases in lacustrine 
systems: the inorganic carbon, having a reservoir 
effect (~1 kyr in the younger sense) and the organic 
carbon, with no reservoir effect. This observation is 
in agreement with Quade et al. (2008), who found no 
reservoir effects on fine-grained thin layers of pure 
carbon originated from terrestrial plant fragments. 

The reservoir effect for the GSG Quaternary 
system remains unknown. According to Quade et 
al. (2008), we do not consider necessary a reser-
voir effect correction for the radiocarbon age of 
the peat sample ElCo (~9 cal kyr BP). Concerning 
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radiocarbon age of sample SS6, in the GSG system 
we have found neither evidences of fossil nor active 
carbonated hydrothermal discharges. Sources that 
could have potentially influenced the radiocarbon 
date of sample SS6 are related to: 1. weathering of 
Mesozoic sedimentary formations located in the 
southeast areas of the basin (Fig. 1); 2. old ground 
waters feeding the lake during dry phases. 

The sample SS6, a carbonate crust that separates 
both the lacustrine and the playa facies, may rep-
resent a retractile lacustrine stage. Thus, it should 
be then necessary to consider a reservoir effect for 
the 14C age of SS6. If the sample SS6 do represents 
decreasing lake levels, then, the retractile stage in 
the GSG basin would have started at ~13.8 cal kyr 
BP. This date must be contrasted ‘vis à vis’ the hy-
drological models proposed for the region (Fig. 10). 

The last glaciation in the Altiplano (Argollo and 
Mourguiart, 2000; Tapia et al., 2003), in northern 
Puna and in the Eastern Cordillera (Clayton and 
Clapperton, 1995; Smith, 2003; Zech et al., 2009a) 
seems to have extended until ~17-16 cal kyr BP. 

Melting glaciers linked to rising temperatures 
(Paduano et al., 2003) led to lacustrine develop-
ments. The Tauca lacustrine phase in the Altiplano 
and the Bolivian Eastern Cordillera (Sylvestre et 
al., 1996; Clapperton et al., 1997; Sylvestre et al., 
1999; Argollo and Mourguiart, 2000; Fornari et al., 
2001; Zreda et al., 2001; Paduano et al., 2003) seem 
to have been synchronous with the Central Andes 
Pluvial Event (CAPE) registered in the Atacama 
region (15.9 to 13.8 cal kyr BP; Gayo et al., 2012; 
Quade et al., 2008). In northern Chile, this rainy 
period (Baker et al., 2001) was also recorded by 
Geyh et al. (1999), Bobst et al. (2001), Grosjean et 
al. (2001) and Grosjean et al. (2003).  

The Tauca phase reached the highstand (Sylvestre 
et al., 1996, 1999; Zreda et al., 2001; Blard et al., 
2009; Blard et al., 2011) at ~15 cal kyr BP, just next 
to the major moraine-glacial advance in the Eastern 
Cordillera of northern Argentina (Smith, 2003; Zech 
et al., 2009b), Bolivia (Clayton and Clapperton, 
1995), and southern Altiplano (Clapperton et al., 
1997). However, Blard et al. (2009, 2011) proposed 
that the glacial maximum activity was synchronous 
with the Tauca lacustrine highstand between 17 and 
15 kyr BP.

The retraction of the Tauca phase was controlled 
by hydrological shifts towards aridity. This brief dry 
period was registered between 14 and 12 cal kyr BP 

in the Atacama region (Gosjean et al., 2001) and 
in the southern Altiplano (Sylvestre et al., 1996; 
Sylvestre et al., 1999). Then, the Coipasa lacustrine 
stage have developed during the Lower Holocene 
(Sylvestre et al., 1996; Sylvestre et al., 1999; Zech 
et al., 2007; Blard et al., 2009; Blard et al., 2011).

We consider that the lacustrine stage of the GSG 
basin could be synchronous with the Tauca lacustrine 
phase and the CAPE. We propose that the 3,415 m 
lacustrine paleoshoreline in Guayatayoc may cor-
responds to this regional Tauca highstand. In this 
context, the 14C age of sample SS6 is in agreement 
with the beginning of the retraction of the Tauca 
phase. The carbonate crust of sample SS6 could be 
formed starting the dry period that took place between 
14 and 12 cal kyr BP. Thus, the radiocarbon date of 
~13,8 cal kyr BP results in good agreement with 
the regional hydrological context, and it becomes 
then unnecessary correcting it for reservoir effects. 

Between ~12,7 and 9 cal kyr BP the climate be-
comes wet. This shift defines a new lacustrine stage 
(the Coipasa phase) in the Altiplano (Clapperton et 
al., 1997; Argollo and Mourguiart, 2000; Fornari 
et al., 2001; Fritz et al., 2007), and in the Eastern 
Cordillera (Smith, 2003; Zech et al., 2007). This 
humid period was also registered in the Atacama 
region (Grosjean et al., 1995; Núñez et al., 1997; 
Geyh et al., 1999; Bobst et al., 2001; Núñez et al., 
2002; Jenny et al., 2002; Grosjean et al., 2003) and 
it was defined as the 12.7-9.7 cal kyr BP CAPE 
(Quade et al., 2008). 

Diatomaceous brown silts from the Guayatayoc 
playa lake could correspond to a local lacustrine 
stage, contemporaneous with the Coipasa phase. 
Sedimentary records are not conclusive, but if so, 
this lacustrine stage was less intense that the Tauca 
phase. In the other hand, these brown silts might 
formed in a playa environment during the Holocene 
sensu lato-humid phase, which accomplished at 
~6 kyr BP with the end of the paleohydrological 
conditions that allowed aggradation in the GSG 
basin.

Around 9 to 8 cal kyr BP hydrological condi-
tions seems to take different paths. Extremely arid 
conditions have dominated the lower Holocene in 
the Atacama region (Grosjean et al., 1995; Núñez et 
al., 1997; Grosjean et al., 2001; Núñez et al., 2002; 
Jenny et al., 2002; Grosjean et al., 2003), and in 
the Altiplano (Wirrman and De Oliveira Almeida, 
1987; Wirrman et al., 1988; Wirrman, 1995; Abbot 
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FIG. 10. Regional paleoenvironmental models for the last 20 cal kyr BP for the region of Atacama (Chile), the Altiplano and Eastern 
Cordillera of Bolivia, and for the northwestern region of Argentina (including the northern area of the Eastern Cordillera and 
the eastern border of northern Puna). The northern Altiplano climate model takes data mainly from Titicaca, while the southern 
Altiplano paleoenvironmental reconstruction was principally based on the available information from Uyuni. The paleoclimate 
reconstruction for the GSG is based on an idealized and simplified section. Referenced sources are: *1 Quade et al. (2008);       
*2 Bobst et al. (2001); *3 Geyh et al. (1999); *4 Gayo et al. (2012); *5 Grosjean et al. (2003); *6 Núñez et al. (2002); *7 
Grosjean et al. (2001); *8 Jenny et al. (2002); *9 Grosjean et al. (1995) and Núñez et al. (1997); *10 Argollo and Mourguiart 
(2000); *11 Tapia et al. (2003); *12 Paduano et al. (2003); *13 Fritz et al. (2007); *14 Wirrman and De Oliveira Almeida 
(1987); *15 Wirrman et al. (1988); *16 Wirrman (1995); *17 Abbot et al. (1997); *18 Cross et al. (2001); *19 Argollo and 
Mourguiart (2000); *20 Sylvestre et al. (1996); *21 Clapperton et al. (1997); *22 Sylvestre et al. (1999); *23 Fornari et al. 
(2001); *24 Zreda et al. (2001); *25 Clayton and Clapperton (1995); *26 Smith (2003); *27 Zech et al. (2007); *28 Servant 
and Servant-Vildary (2003); *29 Zech et al. (2009a); *30 Baker et al. (2001); *31 Grossjean et al. (2007); *32 Kulemeyer 
(2005); *33 Markgraf (1985); *34 Yacobaccio and Morales (2005); *35 Trauth et al. (2003); *36 Valero-Garcés et al. (2000); 
*37 and *38 correspond to 13,8 and 9 cal kyr BP radiocarbon dates from the present contribution; *39 Blard et al. (2009, 2011).
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et al., 1997; Argollo and Mourguiart, 2000; Paduano 
et al., 2003; Tapia et al., 2003). However, climate 
remains wet in the Eastern Cordillera of Bolivia 
(Servant and Servant-Vildary, 2003; Smith, 2003). 
Evidences of humid conditions were also mentioned 
in the northern part of the Argentine Andes. These 
humid conditions remained until 6,5 cal kyr BP in 
the Eastern Cordillera and northern Puna (Markgraf, 
1985; Kulemeyer, 2005; Yacobaccio and Morales, 
2005; Grosjean et al., 2007; Zech et al., 2009a). 
The pit-terraces from El Colorado in GSG (14C age 
of ~9 cal kyr BP) should represent these wet times. 

6. Conclusions

During the late Pleistocene and until middle 
Holocene the environmental and climate conditions 
in Guayatayoc-Salinas Grandes were conducive to 
the development of a 10 m deep saline-lacustrine 
water body. This humid phase occurred after the 
Last Glacial Maximum. During deglaciation and 
until 13.8 cal kyr BP, lake paleoshores were molded 
on the front of distal-alluvial fans, the sedimentary 
aggradation was widespread, and associated with 
kaolinitic-clay accumulation, inyoite precipita-
tion, and the formation of peat-deposits. An envi-
ronmental change towards aridity occurred after                                                        
13.8 cal kyr BP, and wetter conditions returned 
during the early to middle Holocene, around 9 cal kyr 
BP. Then, incisive river dynamics accompanied the 
establishment of a playa lake, with montmorillonitic-
fine sediments and ulexite generation during later 
Holocene. The subdivision of the GSG depression 
in two subbasins occurred by two processes, the 
topographic decoupling associated with Las Bur-
ras’s alluvial fan aggradation during Pleistocene, 
and the lacustrine regression phase at 13.8 cal kyr 
BP. Therefore, Guayatayoc and Salinas Grandes are 
saline systems functioning as a playa lake and a salt 
pan respectively since the Holocene.
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