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ABSTRACT. Climate-driven changes in terrestrial environments and biomes after the Early Eocene Climatic Optimum 
are poorly documented from southern continents. Particularly, Middle Eocene-Early Oligocene leaf and pollen data from 
Central Patagonia (46oS, Argentina) are not sufficient to characterize floristic paleocommunities. Paleosols of the Cañadón 
Vaca (~45-42 Ma) and Gran Barranca (42-38.5 Ma) members (Sarmiento Formation), studied at Cañadón Vaca, solve 
such deficiency and help to reconstruct Middle Eocene landscapes in the beginning of the Cenozoic cooling-drying trend. 
Vitric Entisols, mollic Andisols and andic Alfisols, showing granular structure and diverse micropeds, are cyclically 
arranged mainly in response to variation in fine volcaniclastic eolian supply, which in turn governed ecosystem stability 
and maturity. Soils formed in loessic plains crossed by minor ephemeral rivers, supported open herbaceous-arboreal 
communities which grew in seasonal, subhumid and warm-temperate conditions. Phytoliths produced by Arecaceae, 
megathermic graminoids, sedges and dicots, from the upper part of the studied unit, represent subtropical savannas with 
grasses and variable number of palms and other trees. Considering the abundant paleobotanical and paleopedological 
antecedents of Late Paleocene-Early Eocene warm and humid forested environments in the same region, the lower 
Sarmiento Formation records the initial expansion of open herbaceous communities and the appearance of grassy habitats 
during the greenhouse to icehouse transition in the Middle Eocene. 

Keywords: Paleosol, Paleoclimate, Greenhouse-icehouse transition, Open-herbaceous communities.

RESUMEN. Inicio del enfriamiento global del eoceno medio y expansión de ambientes con vegetación abierta 
en la Patagonia central. Los cambios en ambientes y biomas terrestres inducidos por el clima, con posterioridad al 
Óptimo del Eoceno Temprano, están pobremente documentados en continentes australes. Particularmente, la información 
sobre hojas y polen del Eoceno medio-Oligoceno inferior de Patagonia central (46oS, Argentina) no es suficiente para 
caracterizar las paleocomunidades florísticas. Tal deficiencia es posible resolverla mediante el estudio de paleosuelos 
presentes en la sección inferior de la Formación Sarmiento en Cañadón Vaca, Miembros Cañadón Vaca (~45-42 Ma) y 
Gran Barranca (42-38.5 Ma), los que permiten reconstruir los ambientes del Eoceno medio en el comienzo del período 
de enfriamiento-desecación del Cenozoico. Los Entisoles vítricos, Andisoles mólicos y Alfisoles ándicos que exhiben 
estructura granular y microagregados diversos están cíclicamente ordenados en respuesta a variaciones del aporte eólico 
de material volcanoclástico fino, el cual a su vez gobernó la estabilidad y madurez de los ecosistemas. Los suelos forma-
dos en planicies loéssicas, con ríos efímeros subordinados, sostuvieron comunidades herbáceo-arbóreas abiertas, las que 
crecieron en condiciones subhúmedas, estacionales y cálido-templadas. Los fitolitos producidos por arecáceas, gramíneas 
megatérmicas, juncos y dicotiledóneas, procedentes de la sección superior de la unidad estudiada, representan sabanas 
subtropicales, con pastos y un número variable de palmeras y otros árboles. Considerando los abundantes antecedentes 
paleobotánicos y de paleosuelos sobre ambientes boscosos cálido-húmedos en el Paleoceno tardío-Eoceno temprano 
de la misma región, la Formación Sarmiento inferior constituye el registro inicial de la expansión de comunidades 
vegetales abiertas con pastos, al comienzo de la transición de los sistemas invernadero-frigorífico en el Eoceno medio. 

Palabras clave: Paleosuelos, Paleoclima, Sistemas invernadero-frigorífico, Comunidades herbáceo-árboles abiertas.
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and Gran Barranca Members of the Sarmiento For-
mation, at Cañadón Vaca area (Fig. 1). 

As in other regions, environmental changes in 
Patagonia were related to floristic and pedological 
variations, such as the withdrawal and fragmentation 
of closed forests and the expansion of herbaceous 
open-vegetation habitats, which are recorded in 
paleosols (Bellosi and González, 2010), opal phy-
toliths (Zucol et al., 2010; Sánchez et al., 2010b) 
and trace fossils (Bellosi et al., 2010; Sánchez et 
al., 2010a). This multiple evidence, also supported 
by sedimentologic data (Bellosi, 2010b) and diverse 
fossil mammals (Woodburne et al., 2013) supplied 
from the Sarmiento Formation, contrasts with the 
scarce lowland palynomorphs and plant megafos-
sils of Middle Eocene-Early Oligocene age from 
Patagonia. These paleobotanical assemblages show 
declining megathermal elements and rapid expansion 
of Nothofagaceae and other micro- to mesothermal 
taxa, representing humid temperate to cold-temperate 
forests (Barreda and Palazzesi, 2007), more probably 
from highland western areas. This work aimed to 
reconstructing lowland Central Patagonia landscapes 
and climatic conditions developed during the first 
Middle Eocene steps of the cooling-drying period. 

1. Introduction

Paleogene climate of the Earth was characterized 
by first-magnitude events and variations, particularly 
the Early Eocene Climatic Optimum (EECO) and the 
subsequent transition from greenhouse conditions to 
the present icehouse world, initiated at the beginning 
of the Oligocene (Miller et al., 1987; Zachos et al., 
2001; Mosbrugger et al., 2005; Pagani et al., 2005; 
Tripati et al., 2005). Many environmental and biotic 
turnovers were recognized close to the Eocene- 
Oligocene boundary (e.g., Schouten et al., 2008; 
Pearson et al., 2008; Retallack, 2009). However, it 
is presumed that landscapes and ecosystems were 
affected throughout this long-term cooling and drying 
period in the middle and late Eocene (49-34 Ma).  

Post-EECO modifications in terrestrial environ-
ments are largely known from northern hemisphere 
(e.g., Townsend et al., 2010), but poorly documented 
in the southern continents. The continuous continental 
Paleogene record from central Patagonia (Argentina) 
allows recognizing changes occurred soon after the 
EECO by means of the study of paleosols and dep-
ositional settings. In this case, such modifications 
were appraised in the Middle Eocene Cañadón Vaca 

FIG. 1. Location of Cañadón Vaca area (star) in Chubut province, Argentina. Other localities mentioned in the text are included.
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2. Methods

Field data from Cañadón Vaca area are repre-
sented in descriptive logs, displaying sedimentary 
and pedogenic features. Paleosol horizons were 
identified based upon macroscopic identification of 
changes in structure, mottling, nodules and colors. 
In these horizons, thickness, contact types, mineral 
composition, mean grain size, ped structure, type of 
glaebules and intensity of bioturbation were deter-
mined. Color changes were defined following the 
Munsell notation (Munsell Color Company, 1975). 
According to the prevalent grouping of pedogenic 
features, five ‘type profiles’ of palaeosols were defined 
(Retallack, 1994). Surface horizons were identified 
from root traces underlying beds with no erosive 
basal surfaces and without evidence of pedogenesis. 
Sub-surface horizons were defined based on the pres-
ence of significant clay illuviation (Bt), manganese/
iron oxide nodules/mottles or gleying features (Bg), 

and ped structure. To complement the macroscopic 
characterization, a micromorphological study was 
also undertaken. Thin-section observations included 
the definition of mean grain size, mineralogical com-
position, porosity, microstructure, pedofeatures and 
fine material (groundmass) microfabric (Bullock et 
al., 1985). Paleosol classification is mainly based on 
macro an micromorphological features recognized 
on constituents horizons, through a comparison 
with a modern soil taxonomic scheme (Soil Survey 
Staff, 1999). 

3. Stratigraphic setting

Good-quality exposures of a lower Paleogene 
continental succession are recognized at Cañadón 
Vaca (Fig. 2). This slightly structured succession 
includes the Rio Chico Group and the lower section 
of the Sarmiento Formation, the last divided herein 
into two members. 
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FIG. 2. a. Paleocene-Eocene stratigraphy of Central Patagonia, San Jorge basin. Studied units in grey; b. Climatic events and trends;  
c. South America Land Mammal Ages and chronofaunas. PETM: Paleocene-Eocene Thermal Maximum; EECO: Early Eo-
cene Climatic Optimum; MECO: Middle Eocene Climatic Optimum; Oi-1: Early Oligocene glaciation; L.P.A.: Lower Puesto 
Almendra Member.
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The lower unit of the Río Chico Group is the 
Peñas Coloradas Formation, a fossiliferous fluvial 
succession constituted by channelized cross-bedded 
sandstone bodies, intercalated with greenish gray 
and reddish tuffaceous mudstones accumulated in 
the floodplain. Both facies show pedogenic features 
such as blocky structure, slickensides, mottles and 
a variety of root traces including large drab-haloes, 
small rhizoliths and very large vertical, ferruginous 
rhizoconcretions. Vertebrate remains include poly-
dolomorphs, condylarths and ungulates, probably 
belonging to the ‘Carodnia’ fossil zone of Late 
Paleocene age (Raigemborn et al., 2010). The top 
of this succession is erosive under the Las Flores 
Formation. This finning-upward unit is composed 
of whitish, lens shaped sandstones showing epsi-
lon cross-bedding, embedded in thicker, greenish 
gray massive mudstones. Paleosols are uncommon 
and probably weakly developed. The depositional 
system is envisaged as extensive floodplains with 
high-sinuosity rivers and shallow lakes. This unit has 
been assigned to the Late Paleocene-Early Eocene 
(Raigemborn et al., 2010).

3.1. Sarmiento Formation

The Sarmiento Formation is a continental, 
pyroclastic succession widely exposed in Central 
and North Patagonia. The bio- and lithostratigraphic 
characterization was carried out at the type locality 
(Gran Barranca) by Feruglio (1949) and Spalletti 
and Mazzoni (1979). Reassessing of the hierarchy 
of internal bounding surfaces enabled the definition 
of six members: Gran Barranca, Rosado, Lower 
Puesto Almendra, Vera, Upper Puesto Almendra and 
Colhue-Huapi (Bellosi, 2010a, b). Vertebrate remains 
included in the lowermost member correspond to 
the ‘Barrancan’ Subage, the late choronofauna of 
the ‘Casamayoran’ SALMA (Fig. 2). Isotope dating 
and magnetostratigraphic profiles adjusted the 
chronology of the Sarmiento Formation in the late 
Middle Eocene (41.9 Ma) - Lower Miocene (18.8 Ma)                                                                                
interval (Ré et al., 2010; Dunn et al., 2013).

At Cañadón Vaca area, the Sarmiento Formation is 
115 m (Fig. 3) thick and presents six ‘Casamayoran’ 
mammal-bearing beds (Ameghino, 1906; Feruglio, 
1949) of Middle Eocene age. The lower five attributed 
to the ‘Vacan’ Subage, and the uppermost one to the 
‘Barrancan’ Subage (Cifelli, 1985). In addition, the 
‘Vacan’ beds include reptile remains (crocodilians, 

snakes and turtles, Simpson, 1932, 1933; Gasparini, 
1972; Albino, 1993; de Broin and de la Fuente, 1993). 
The Cañadón Vaca section includes the oldest part 
of the Sarmiento Formation, absent at Gran Barran- 
ca locality. Cifelli (1985) interpreted taxonomic 
differences between both mammal assemblages as 
chronologic, but not by ecological factors. 

The Sarmiento Formation lies on the Las Flores 
Formation with a sharp and flat contact (Cifelli, 
1985), here conceived as a paraconformity (Fig. 4a). 
At southern Chubut localities (i.e., Gran Barranca, 
Cañadón Blanco) this boundary is transitional on 
the Koluel-Kaike Formation, which in turn lies upon 
the Las Flores Formation (Krause et al., 2010a,                                                                        
Raigemborn et al., 2010). This supports the inter-
preted unconformity between the Río Chico Group 
and the Sarmiento Formation at Cañadón Vaca. The 
Sarmiento Formation is covered by recent sedi-
ments. ‘Casamayoran’ mammals from the studied 
area allow its correlation to the Cañadón Hondo 
Formation (Andreis, 1977), located 20 km to the 
SE (Piatnitzky, 1931; Simpson, 1941). Similarities 
are also recognized in total thickness, stratigraphic 
position, less proportion of detrital sediments in 
lower section, higher number of bentonite beds and 
abundance of granular weakly-developed paleosols 
in upper section.

According to lithofacies composition, the Sarmien-
to Formation at Cañadón Vaca can be divided into two 
subunits bounded by a transitional contact (Figs. 3, 4a):                                                                                         
the Cañadón Vaca and Gran Barranca members.

3.1.1. Cañadón Vaca Member (CVM)
This lower section (55 m) of the Sarmiento For-

mation (Fig. 3) is mainly constituted by yellowish 
gray pyroclastic and siliciclastic mudstones, fine tuffs, 
conglomerates and paleosols (Table 1). The accurate 
age of the CVM and ‘Vacan’ Subage is unsound 
because the lack of radiometric dates. A mean age 
of 45 Ma was proposed by Carlini et al. (2005) to 
the ‘Vacan’ chronofauna. Taking into account the 
stratigraphic continuity, thickness and similar facies 
and paleosols with the GBM at Cañadón Vaca and 
Gran Barranca localities, a chronologic estimation 
can be made. First, minimum age of CVM would 
be 41.9 Ma according to the age of GBM in the type 
location (Dunn et al., 2013). Second, sedimentation 
rates (considering 10% compaction) of the upper and 
lower sections of the GBM are 11 and 45 mm/ka,                                       
respectively (Ré et al., 2010; Dunn et al., 2013). Thus, 
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FIG. 3. Sedimentologic profiles of the Sarmiento Formation, at Cañadón Vaca area.



average maximum age of CVM would be 45.0 Ma                                                           
(range 43.1-46.9 Ma). 

Since the CVM includes more and stronger 
developed paleosols than the GBM from Gran Bar-
ranca locality, a little older age is possible. ‘Vacan’ 
assemblage comprises archaic families less derived 
than ‘Barrancan’ ones, and not very dissimilar to 
the ‘Riochican’ fauna (Cifelli, 1985). A correlation 
between CVM and the lower and middle sections 
of the Cañadón Hondo Formation (Andreis, 1977) 
is proposed herein according to similar deposits. In 
both cases fluvial facies are common, suggesting 
relative more humid climate regard to those recorded 
in the GBM. 

3.1.2. Gran Barranca Member (GBM)
The upper 60 m of the Sarmiento Formation 

at Cañadón Vaca area are correlated to the Gran 
Barranca Member from the type locality because 
similar ‘Barrancan’ fossils and facies (Fig. 3). It is 
formed by yellowish gray and light greenish gray 
pyroclastic mudstones, bentonites, fine-grained 
tuffs, siliciclastic mudstones and paleosols (Table 1).                                              
Detailed geochronology of the GBM at the type 

locality suggests that the age of this member at 
Cañadón Vaca area is Middle Eocene (41.9-38.3 
Ma interval) (Ré et al., 2010; Dunn et al., 2013). A 
recent U-Pb shrimp age of 39.0+0.5 Ma next to the 
Gran Barranca (Suárez et al., 2011), ratifies this age. 
Cifelli (1985) indicated that mammal remains from 
the upper section of the GBM (site 6) from Cañadón 
Vaca area correspond to ‘early Barrancan’ taxa. A 
correlation between GBM and the upper section of 
the Cañadón Hondo Formation (Andreis, 1977) is 
suggested according to similar facies.

4. Depositional facies and paleosols  

Table 1 summarizes the characteristics, interpreta-
tion and stratigraphic distribution of depositional facies 
and paleosols of the Sarmiento Formation (Fig. 4).                                                                                        
They are massive or laminated pyroclastic and 
siliciclastic mudstones, cross-bedded medium and 
fine-grained tuffs bearing fossil vertebrates, bentonite 
mudstones, conglomerates with extraformational 
clasts (volcanic, metamorphic rocks), coarse-grained 
pyroclastic sandstones and three pedotypes. In the 
CVM siliciclastic mudstones and tuffs are more 

FIG. 4. A. General view of the Sarmiento Formation at Cañadón Vaca and the lower paraconcordant boundary on Las Flores Forma-
tion (LF). CVM: Cañadón Vaca Member; GBM: Gran Barranca Member; B. Pedotype 2 in GBM showing large intraclasts, 
granular peds and Fe nodules in Bt horizon; C. Complete profile of mollic Andisol (Pedotype 2) in CVM;  D. Middle and upper 
sections of CVM, arrows point to paleosols; E. surface (A) horizon with well-developed granular ped structure and Fe oxide 
nodules (arrows) and Bt horizon with blocky peds, Pedotype 3 in CVM; F. mollic Andisol with small granular peds, Pedotype 
2 in CVM. Scale 1 cm. Hammer 35 cm.
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abundant, while conglomerates and coarse-grained 
sandstones are exclusive and paleosols are less frequent 
(45% of  beds) (Fig. 4d). In the GBM pyroclastic 
mudstones are more abundant and bentonites are 
exclusive. Paleosols are numerous (75% of beds) 
and more strongly developed (Fig. 4b). 

A high proportion of beds were weakly to mod-
erately modified by soil forming processes. More 
frequent pedological features include ped structure, 
horizons with transitional contacts, Fe and Mn oxide 
nodules, mottles, root and invertebrate trace fossils 

and slickensides. Color changes are subtle. The 
development degree varies according to number 
and thickness of horizons, preservation of original 
sedimentary structures and progress of macro and 
microscopic characteristics such as oxides, clay 
enrichment, groundmass properties (birefringence 
fabric, micropeds, coarse/fine (c/f) ratio) and mineral 
alteration (Bellosi and González, 2010). Stronger 
developed paleosols tend to be related to eolian 
pyroclastic mudstones (facies C), while weaker 
ones are related to channel sandstones (facies B) and 

TABLE 1. PROPERTIES, INTERPRETATION AND STRATIGRAPHIC DISTRIBUTION OF DEPOSITIONAL FACIES 
AND PALEOSOLS OF THE LOWER SARMIENTO FORMATION. 

LITHOLOGY STRUCTURE / FEATURES INTERPRETATION CVM GBM

D
E

PO
SI

T
IO

N
A

L 
 F

A
C

IE
S

A

Conglomerates, extrafor-
mational clasts. Coarse-
grained pyroclastic sand-
stone

Tabular, thin and fining-up beds (0.1-0.6 m 
thick). Trough cross-bedding 

Fluid currents in shallow flu-
vial channels. Allochtonous 
sediments.

4% -

B Medium to fine-grained 
tuffs 

Trough cross-bedded or Massive. 
Cosets up to 3 m. Normal grading. 
Root traces. 

Non permanent fluvial chan-
nels. Reworking of autoch-
thonous sediments.

25% 6%

C Pyroclastic siltstones Massive. Rare lamination. Vitric and crystalline. 
Beds 1-6 m thick.

Volcanic dust/fine ash fall-
outs on vegetated plains. 
Eolian reworking.

43% 62%

D Siliciclastic mudstones Massive. Lamination. 
Beds 0.8-6.2 m thick.

Suspension of fine silici-
clastic sediments in shallow 
lakes/ponds.

28% 5%

E Bentonite mudstones Massive.  Beds 1-4 m thick. Similar to facies D. Pyroclas-
tic material. - 27%

PA
L

E
O

SO
L

S

1

Hz A: Pyroclastic mud-
stone

Hz C: Pyroclastic mud-
stone

Cross-bedded, Fe-Mn nod/mottles, rhizoliths, 
burrows.

Laminated, slickensides, Mn nodules, rhi-
zoliths.

andic/vitric Entisol 
(very-weak development 
degree)

33% 54%

2

Hz A: Fine, medium-
grained tuffs 

Hz Bt:  Fine-grained tuff/
Silic.  mudstone

Hz BC:fine-med tuff

Laminated, x-bedded, granular peds, Fe-Mn 
nodules, rhizoliths, burrows, Coprinisphaera.

Blocky/granular peds, rhizoliths, Mn nod/
mottles, slickensides, helicoid traces, micro-
peds/granules.

Massive/laminated, slickensides.

mollic Andisol
(weak-moderate develop-
ment degree)

33% 38%

3

Hz A:  Pyroclastic mud-
stone 

Hz Bt/Bg:Fine-grained 
pyroclastic mudstone 

Hz BC: Fine-grained tuff/ 
Silic. mudstone

Blocky/granular peds, rhizoliths, Fe nodules, 
Coprinisphaera, abundant micropeds/pellets.

Blocky peds. Abundant micropeds/granules. 
Mn-Fe nodules, rhizoliths, slickensides. 

Massive, rhizoliths.

andic Alfisol
(moderate development de-
gree)

34% 8%

CVM: Cañadón Vaca Member; GBM: Gran Barranca member.
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FIG. 5. Microscopic features of the Sarmiento Formation paleosols. A. Peds defined by darker zones bearing channel pores (arrows), 
A horizon of Pedotype 2; B. Voids coated by darker Mn and organic matter skins, and small pellets (0.15 mm) inside; large 
microped or granule (arrowed) in groundmass. Bt horizon of  Pedotype 2; C. Ferruginous nodule (arrowed) and micropeds. 
A horizon of Pedotype 3; D. Grouped micropeds or granules, A horizon of Pedotype 3; E. Subrounded  microped (Pe), pores 
(P) with laminated clay skins (arrows), A horizon of  Pedotype 3; F. Large oval pellet coated by clay skin, B horizon of Pedo-
type 2; G. Digitate manganese nodule (after Bullock et al., 1985) showing incipient development, Bg horizon of Pedotype 3;                           
H. Slightly altered glass shards in clayey groundmass, Bt horizon of  Pedotype 3. Bar scale 0.5 mm.

bentonites (facies E). Upper horizons are commonly 
indurated owing to higher concentration of clay or 
Fe-Mn oxides. Associated pedological features define 
three pedotypes in the Sarmiento Formation, repre-
senting a combination of time of formation, vegetal 
communities and geomorphic setting. 

Pedotype 1 is the most numerous in the forma-
tion, particularly in the GBM (Table 1). It presents 
two horizons, 0.5 m thick approximately (Fig. 5). 
Surface (A) horizon consists of pale greenish yel-
low (10Y8/4) pyroclastic mudstones, massive or 
showing relict cross-bedding, irregular small mottles 
or scarce Fe-Mn nodules, rhizoliths and low inver-

tebrate bioturbation. Plagioclase crystals and glass 
shards are fresh or slightly altered. The subsurface 
(C) horizon is separated by a transitional or sharp 
contact, and formed by coarser pyroclastic, very 
light olive gray (5Y7/1) mudstones with remnants 
of horizontal lamination, short slickensides, rare Mn 
nodules and rhizoliths.  

Pedotype 2 (Fig. 5) is up to 0.7 m thick, and includes 
smectite clay and several horizons, some of them 
with vestiges of cross-bedding or lamination. Surface 
(A) horizon is generally indurated and composed of 
very light gray (N8), fine to medium-grained tuffs, 
exhibiting coarse granular structure (Fig. 4c), Fe-Mn 
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nodules, and less frequently rhizoliths, meniscate 
burrows (Taenidium isp.) and dung beetle brood balls 
(Coprinisphaera isp.). At microscope, granular peds 
(15 mm) are defined by darker zones along scarce, 
interconnected channel pores (‘hypocoatings’ after 
Bullock et al., 1985) showing higher impregnation 
of Fe-Mn oxides and organic matter, and contrast 
with the depleted clayey groundmass (Fig. 6a). 
Birrefringence fabric is complex, speckled and 
granostriated. Glass shards, plagioclase, quartz and 
volcanic rock fragments dominate the composition. 
Soil clasts are also observed. Glass shards exhibit 
moderate alteration. Laminated and impregnated 
clay coatings are present in pores. Granules or 
micropeds are frequent in the groundmass. Subsurface 
(Bt) horizon is formed by yellowish olive gray 
(5Y6/2), fine-grained tuffs or siliciclastic mudstones 

including blocky or granular peds larger than in the 
upper horizon, deep root traces, irregular mottles 
or Mn nodules and discontinuous slickensides. 
Clay coatings on pores, grains and granules are 
thin but frequent. Some profiles show a (Bt2) 
subhorizon with smaller granular peds, intense 
bioturbation, helicoid traces 5 cm long with pelletoidal 
walls, and frequent (15%) ovoid microstructures,                                                                                                
1.6-2.9 mm long (Fig. 5f). In thin sections, the horizon 
presents abundant micropeds or granules (0.5-0.9 mm),                                                                                 
generally welded; and irregular soil fragments 
dispersed in the groundmass. Microstructure is mainly 
massive. Blocky peds are defined by scarce chamber 
and channel voids (5%), some of them with small 
(0.1-0.3 mm) pellets inside (Fig. 6b) and Mn and 
organic matter cutans. The c/f ratio is porphyric and 
the groundmass is clay-rich and impregnated with 

FIG. 6. Representative profiles of pedotypes from the Sarmiento Formation. Pedotype 1 corresponds to vitric Entisols, Pedotype 2 to 
mollic Andisols and Pedotype 3 to andic Alfisols.
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Fe and Mn oxides. Large (20 mm), meniscate and 
near-complete infillings (or pedotubules), including 
medium size granules, are also observed. Mammal 
and crocodile remains were recovered from this 
paleosol. Lower (BC) horizon is a yellowish white 
(5 Y 9/1), fine to medium-grained tuff with short 
slickensides or relict lamination.

Pedotype 3 (Fig. 5) predominates in the CVM and 
is scarce the GBM (Table 1). It presents well-differ-
entiated horizons. Surface (A) horizon is formed by 
pale greenish yellow (10 Y 8/4), pyroclastic mudstones 
showing coarse blocky structure sometimes with 
internal granular peds (Fig. 4e). Rhizoliths, diverse 
burrows and dung beetle brood balls also occur. Some 
cases present Fe oxide nodules (Fig. 6c) and short 
slickensides. At microscope it shows a porphyric c/f 
distribution, low porosity (5%) composed by poorly 
connected but long channel voids defining blocky 
peds. Composition of the coarse-grained fraction 
is similar to previous pedotypes. Soil clasts are 
also observed. The clay-rich groundmass displays 
high Fe-Mn impregnation and includes abundant 
subrounded and subangular micropeds or granules 
(0.8-1.7 mm), composed by indurated and slightly 
darker soil material (Fig. 6d). Size and shape are 
less regular, and contour less smooth than ovoid 
microstructures of pedotype 2. Thin clay coatings are 
present in pores, around grains and granules (Fig. 6e).                                                                               
Glass shards are frequent to abundant, showing 
poor to moderate alteration (Fig. 6h). Subsurface 
B horizon includes yellowish gray (5 Y 7/2), finer 
pyroclastic mudstones or bentonites, blocky structure 
(Bt), Mn or Fe nodules (Bg) rhizoliths and long 
slickensides. Micromorphology is characterized 
by a prophyric c/f ratio, abundant micropeds or 
granules, mostly welded and incipient Mn nod-
ules (Fig. 6g). Microstructure presents moderate 
porosity (10%) formed by connected channel and 
vesicle voids that define blocky peds. The complex 
b-fabric is speckled and granostriated. Pores, grains 
and granules show laminated and continuous clay 
coatings. Lower (C) horizon is commonly a tuff 
or siliciclastic mudstone showing rhizoliths and 
weak alteration of glass shards and plagioclase. 
Microstructure is massive and blocky by sectors, 
with scarce channel pores showing very thin and 
discontinuous clay cutans.

All pedotypes share properties generated in 
analogous conditions, suggesting that differences 
are mainly due to time of soil development or in-

tensity of similar soil forming processes. The last 
were clay lessivage or argilluviation, gleization 
(formation of Fe-Mn nodules and mottles) and 
macro or microbioturbation (sediment reworking 
by soil invertebrates). Stratigraphic distribution of 
pedotypes displays a cyclic arrangement, without 
interruptions or discontinuities (Fig. 7a). Cycles 
include three to five units, from the strongest           
(pedotype 3) to the weakest developed (pedotype 1), 
reflecting relative changes in landscape persistence 
or stability. In both members, characteristics and 
extension of these cycles are similar. 

Approximate time for soil formation is shown 
in figure 7b. For very weakly developed paleosols 
(pedotype 1), time is estimated by comparison to 

FIG. 7. A. Stratigraphic distribution of pedotypes recognized in 
the Sarmiento Formation. Cycles mainly record changes 
in sedimentation rate and landscape persistence (see text); 
B. Estimated time for soil formation. 
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similar Oligocene andic Entisols of North America 
(Retallack et al., 2000). For weakly (pedotype 2) or 
moderately developed paleosols (pedotype 3), time 
is assessed according to thickness of eluvial (Bt) 
horizons (Markewich et al., 1990; Sheldon, 2003).

5. Discussion

5.1. Sedimentation of the Sarmiento pyroclastics

Dissimilarities between ‘Barrancan’ and ‘Vacan’  
faunal associations, and the affinity between the 
last and the ‘Riochican’ preserved in the upper Río 
Chico Group, could indicate a hiatus separating both 
‘Casamayoran’ Subages (Cifelli, 1985). According 
to Goin et al. (2012), the temporal value of this 
hiatus would be 2 m.a. (44-42 Ma). Notwithstanding, 
sedimentologic observations presented herein do 
not support such interpretations. General stacking 
pattern and similar facies, repeated arrangement 
of the same pedotypes and absence of bounding 
surfaces, point to a transitional contact between 
CVM and GBM and comparable depositional 
landscapes. In addition, any paleosol of the entire 
succession is sufficiently developed to involve a 
prolonged lapse; despite of time of pedogenesis is 
always greater than time of sedimentation (Retallack, 
2001a). Compared to similar examples from the 
type locality, where properties and chronologic 
significance of discontinuity surfaces are known 
(Bellosi, 2010a, b), the boundary between CVM 
and GBM at Cañadón Vaca area imply a short time. 
Accordingly, it is suggested that if it exists, there 
would be a non significant hiatus between ‘Vacan’ 
and ‘Barrancan’ associations. 

The beginning of the Sarmiento sedimentation 
occurred after a period of possible erosion. Fine 
ashes were supplied from distal volcanic centers 
located in northwestern Patagonia (Bellosi, 2010b). 
Sediment accumulation of the CVM was governed 
by distal, subaerial fallouts of suspended volcanic 
ash and dust on vegetated plains (tephric loessites, 
facies C). A proportion of these ashes was reworked 
by mixed-load fluvial channels (facies B), and 
deposited in shallow lakes and ponds (facies D). 
Rivers also transported coarser epiclastic material 
(facies A). Subaerial accumulation prevailed in the 
overall sedimentary scenery. Pyroclastic supply was 
sustained but discontinuous, allowing soil formation 
and growing of plant communities during times 

of low or null sedimentation. Weaker developed 
paleosols in the upper section of the CVM sug-
gest an increase in the sedimentation rate and less 
stable landscapes. Tabular geometry and internal 
anatomy of fluvial channel fill suggest that rivers 
developed low sinuosity and up to 3 m in depth, 
with marginal bars including sinuous megaripples. 
Vertebrate remains are mostly preserved in channel 
deposits. Fluvial regime was probably ephemeral 
because frequent pedogenic modification. Extend-
ed lacustrine environments fed by these rivers, 
survived until the end of the sedimentation of the 
CVM. Eolian accumulation of fine-grained pyro-
clastics on vegetated landscapes (tephric loessites) 
was more persistent during the time of the GBM. 
Lower proportion of fluvial facies and the increase 
of bentonite beds suggest that subaerial plains and 
shallow lacustrine settings expanded on plains in 
detriment of rivers.

Cyclic arrangement of pedotypes (Fig. 7), 
formed on similar materials and by comparable 
processes, would be a response to periodic changes 
in pedogenesis or sedimentation rate. The former 
mostly depends on environmental processes which 
govern weathering (Kraus, 1999; Retallack, 2001a).                                                                             
Although climate is the main factor (Chesworth, 
1992), it is possible to infer that climatic changes 
were unimportant because soil forming processes kept 
relatively uniform along the Sarmiento Formation. 
Such uniformity is appreciated in the persistence 
of features originated by the same processes: ar-
gilluviation, bioturbation and gleization; and in 
the inexistence or low effect of other processes: 
vertization, base cation lixiviation, calcification or 
paludization. Accordingly, regular distribution of 
pedotypes would represent the dynamic equilibrium 
of sediment accommodation in loessic and fluvial 
landscapes of Central Patagonia. Cycles begun in 
lapses of unvarying topography and vegetation 
with low or null sedimentation rate (i.e., strongly 
developed paleosols), and culminated with higher 
instability in these factors and renewed accumula-
tion (weaker developed paleosols). This unsteady 
landscape could be related to a more intense activity 
of the volcanic arc or higher effectiveness of wind 
transport. In any case, an increase in sediment supply 
was produced along with physic and biotic unfa-
vorable conditions to soil development. Likewise, 
changes from relative low to high accommodation 
space are also revealed in each cycle.
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5.2. Middle Eocene paleoclimate and ecosystems

Prevailing eolian facies and subordinated fluvial 
channel deposits suggest subhumid to semiarid 
conditions during sedimentation of the Middle 
Eocene Sarmiento pyroclastics. Loess deposits, 
similar to massive pyroclastic siltstones (Facies C)                    
from Cañadón Vaca and elsewhere in central Pa-
tagonia (Bellosi, 2010b), are generally interpreted 
as the record of dry conditions (Guo et al., 2002), 
which are confirmed by paleosol attributes. Glass 
shards, preservation of sedimentary structures and 
the scarce pedological features observed in pedo- 
type 1 indicate a very weak soil development, com-
parable to andic or vitric Entisols. These paleosols 
formed on subaerial ash falls and channel deposits 
are insufficiently developed for long time enough 
to be reliable indicators of palaeoclimate. The 
scarce and fine rhizoliths associated to low degree 
invertebrate bioturbation would represent an early 
successional community. Poor drainage and drying 
favor Mn mobilization and fixation, and subsequent 
nodule formation by alternate oxidizing-reducing 
conditions (Krause et al., 2008). Slickensides also 
formed by soil wetting and desiccation. Both char-
acteristics suggest seasonality in water availability. 
Absence of free carbonate concentrations indicates 
annual precipitation over 500-600 mm (Sheldon, 
2003). Landscape corresponding to this pedotype 
can be envisaged as young not dry lowland, which 
supported herbaceous communities associated to 
the first steps of a successional colonization on 
disturbed poorly-drained substrates. They probably 
formed short after falls of volcanic dust and ash, 
or subsequent to fluvial channel deactivation or 
abandonment. According to described character-
istics and by comparison to similar andic Entisols 
from Oregon (Retallack et al., 2000) a short time 
of formation is inferred, probably a few thousand 
of years (Fig. 7b). Progress in soil and biome 
development was generally impeded by renewed 
pyroclastic sedimentation. 

Pedotype 2 is characterized by granular ped struc-
ture, relict bedding, moderately altered glass shards, 
partial textural differentiation and absence of alkali. 
These properties indicate a weak soil development. 
Granular peds, rhizoliths and drab color of the surface 
horizon are comparable to mollic epipedon (Fig. 4f). 
The examples whit a middle horizon exhibiting small 
granular peds and ovoid pellets cannot be consid-

ered a Mollisol because light hue and scarcity and 
morphology of rhizoliths (Retallack, 1997). They 
are better classified as mollic Andisols. Time for soil 
formation is in the range of 20 to 200 ky (Fig. 7b),                                                                         
which is compatible to similar Andisols from Oregon 
(Retallack et al., 2000). Argillic texture of subsurface 
horizons and deep rhizoliths suggest well drainage 
and high moisture retention, although hypocoatings 
and Mn nodules indicate, at least, temporal water-
logging or gleying. Climate would be seasonal, 
subhumid, and probably warm-temperate or warm 
according to the singular herpetological fossil suite 
found in the CVM (Simpson, 1933; Albino, 1993, 
Pol et al., 2012). Complete carbonate leaching and 
smectite-dominated composition suggest a rainfall 
regime (MAP) not far beyond the humid side of the 
ustic-udic limit (Soil Survey Staff, 1998), this is in 
the range 650-850 mm/y. Sebecid crocodyliform and 
booid snake remains from ‘Casamayoran’ beds indi-
cate elevated mean temperatures (Pascual and Ortíz 
Jaureguizar, 1990). Higher ichnodiversity, presence 
of diverse micropeds resembling pellets (at least 3 
sizes) probably formed by different invertebrates and 
stronger development suggest more stable landscapes 
than pedotype 1, supporting a moderately-varied and 
mature soil and plant communities. Horizons showing 
mollic aspect are frequent in grass-dominated soils 
populated with invertebrates (Retallack, 2001b). 
However, a partial tree cover is not discharged. 
Helicoid trace fossils could be attributed to some 
arthropod, constituent of the soil fauna. 

Pedotype 3 gathers paleosols showing the 
strongest development degree. It represents mod-
erately developed soils according to well-defined 
horizons, surface horizons with complex ped 
structure, subsurface argillic horizons, widespread 
microbioturbation and inexistence of depositional 
structures. Such attributes are suitable for andic 
Alfisols, probably originated in seasonal-sub-
humid and warm-temperate conditions. The 
stability of the environments where pedotype 3                                                                               
developed is estimated in 90-350 ky (Fig. 7b).                  
The abundant micropeds or granules (pellets), as 
a notable component of soil groundmass, reveal 
a significant invertebrate soil fauna and organic 
matter availability. This pedotype records more 
stable settings than previous ones, probably formed 
late successional ecosystems with herbs and trees. 

Opal phytoliths and paleosols from the type 
locality are also useful to reconstruct floristic com-
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munities of Cañadón Vaca area. Most of phytoliths 
came from grasses (pooid, panicoid, danthonioid 
and chloridoid graminae) and palms, and subor-
dinately from sedges (ciperaceae), arboreal and 
shrubby dicotyledons and aquatic or swamp herbs 
(Zucol et al., 2010). Palm elements predominate 
in the lower and the uppermost part, while grass 
phytoliths are dominant in the middle and upper 
parts. A megathermic regime is suggested by high 
proportion of panicoids (C4) grasses. The phytolith 
assemblage represents an open herbaceous-arboreal 
community similar to subtropical savannas, with 
grasses and a variable number of palms and other 
trees (Zucol et al., 2010), that grew in placic, cal-
cic and claye-ferruginous Andisols and Vertisols 
(Bellosi and González, 2010). These results where 
corroborated by Sánchez et al. (2010b) who reported 
52-31% of grass phytoliths in the same paleosols, 
comparable values to those presented by Zucol et al. 
(2010). Despite no vegetal fossils are known from 
CVM, analogous paleosols, depositional facies, trace 
fossils and fossil vertebrates to the GBM suggest 
similar landscape and flora. Vegetal communities 
associated to the CVM would have been integrated 
by palms and grasses, along with sedges and dicots. 
The last included Fagaceae, as a constituent of the 
canopy layer, according to logs and leaves recovered 
from the middle member of the Cañadón Hondo 
Formation (Andreis, 1977). These inferences are 
also supported by the phytolith assemblages from the 
upper section of the Koluel-Kaike Formation, where 
abundant palm and grass phytoliths were distinguished                                                                                       
(A. Zucol, personal communication, 2012). Likewise, 
andic paleosols from this section showing granular 
peds, fine rhizoliths and cicada trace fossils are also 
compatible with dominant herbaceous communities 
(Krause et al., 2008, 2010a).

Comparable facies and pedotypes in both CVM 
and GBM at Cañadón Vaca area suggest similar 
depositional processes and paleoenvironments. 
The higher proportion of loess facies in the GBM 
indicates slightly dryer conditions. Paleosols could 
give away minor differences in local landscapes. 
Ash deposits frequently imitate drying effects 
such as loss of vegetation, surface drought or xeric 
conditions, alkaline setting and soil burying (Harris 
and Van Couvering, 1995). Accordingly, temporary 
barrenness or false aridity owing to syneruptive sedi-
ments and geomorphology must be considered when 
landscapes and biomes from ancient volcaniclastic 

settings are reconstructed. To avoid this problem, 
paleosols showing stronger development better 
preserve non-eruptive recovery phases, and record 
late successional or climax ecosystems. Differences 
in paleosols of the GBM at Cañadón Vaca and Gran 
Barranca denote that landscapes in the first locality 
were more uniform, while in Gran Barranca locality 
co-existed high well-drained and low waterlogged 
sectors. Such scenery was conceived as rolling loessic 
plains (Bellosi, 2010b). ‘Casamayoran’ faunas that 
subsisted in these ecosystems were dominated by 
Notoungulates and Cingulates along with Sparasso-
donta and Polydolopimorphia marsupials, classified 
as browsers, insectivorous, myrmecophagous and 
omnivorous (Pascual and Ortíz Jaureguizar, 1990). 
The Middle Eocene increase in land mammal di-
versity, expressed by the higher number of ‘Vacan’ 
and ‘Barrancan’ genera,  along with the presence 
of very large-sized taxa (Woodburne et al., 2013), 
was probably related to changing landscapes and 
the appearance of new open ecosystems.

5.3. Environments at the onset of the green-
house-icehouse transition

Stable isotope and geochemical records show that 
after the EECO (Early Eocene Climatic Optimum) 
Earth climate begun a prolonged cooling tendency 
towards icehouse conditions (Zachos et al., 2001; 
Tripati et al., 2005; Westerhold and Rohl, 2009). 
This global temperature reduction was simultaneous 
with rainfall diminution, seasonality increase and 
greater definition of thermal latitudinal gradients. 
The impact on continental and marine biota had a 
planetary extension (Hinojosa, 2005; Mosbrugger 
et al., 2005; Jaramillo et al., 2006; Thomas, 2008). 
However the long-term cooling trend was not uni-
form, but with short reversals such as the Middle 
Eocene Climate Optimum (MECO) at 40-41 Ma 
(Bohaty and Zachos, 2003; Jovane et al., 2007; 
Bohaty et al., 2009). Diverse physicochemical and 
biologic causes would explain the transition from 
greenhouse to icehouse stages: changes in atmosphere 
greenhouse gas concentration (Pagani et al., 2005), 
oceanographic modifications and thermal isolation of 
Antarctica (DeConto and Pollard, 2003a, b; Huber et 
al., 2004; Cristini et al., 2012), constriction of Thetys 
and central America seaways (Zhang et al., 2011); 
mountain uplift and subsequent deeper weathering 
(Raymo and Ruddiman, 1992); enhanced burial of 
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organic carbon (France-Lanord and Derry, 1997); 
alteration of insolation patterns and seasonality 
(Coxall et al., 2005); and the increase of carbon 
sequestration and CO2 consumption by hydrolytic 
weathering because the expansion of plants with 
phytoliths (Parr and Sullivan, 2005), grasslands and 
their soils (Retallack, 2001b, 2009).

Paleocene-Early Eocene warm-wet conditions in 
southern South America and Antarctic Peninsula are 
recorded in high-diversity floras (Troncoso et al., 
2002; Wilf et al., 2005; Thorn and DeConto, 2006; 
Barreda and Palazzessi, 2007; Palazzesi and Barreda, 
2007; Iglesias et al., 2011). Additional evidence 
of tropical-subtropical climate came from the Río 
Chico Group such as phytoliths and fossil woods 
(Brea et al., 2009; Raigemborn et al., 2009; and 
kaolinite-rich clay associations (Raigemborn et al., 
2009), and from Uruguay ferricretes (Bellosi et al., 
2004). The closest antecedent to the Cañadón Vaca 
study case is the Early-Middle Eocene Koluel-Kaike 
Formation (Rio Chico Group) which includes lat-
eritized Ultisols (Krause et al., 2010a, b), formed 
under diverse forests testified by coniferous woods 
(Brea et al., 2009) and phytoliths coming from ten 
tropical families (A. Zucol, personal communication, 
2012). Antarctic cooling episodes and probable ice 
cover since Early Eocene have been inferred from 
weathering indices and vegetation reconstruction 
(Passchier et al., 2013).  This is coincident with the 
alpine glaciation and sea-ice formation in the Artic 
(Stickley et al., 2009).

The beginning of the Eocene cooling-drying does 
not have a precise chronology in the examples from 
Central Patagonia. It can be dated approximately 
at the time of the transition between Koluel-Kaike 
Formation and Cañadón Vaca Member. According to 
proposed ages, the environmental change started in 
the lower Middle Eocene, at ca. 47-45 Ma, probably 
related to the first ephemeral ice sheets on Antarc-
tica at 49 Ma (Westerhold and Rohl, 2009). Cooler 
conditions in NW Patagonia are clearly expressed 
by the Middle-Late Eocene expansion of Nothofa-
gus (Melendi et al, 2003; Barreda and Palazzesi, 
2007). This climate shift was not accompanied in 
central Patagonia by modifications in relief or sedi-
ment supply (Bellosi, 2010b, Krause et al., 2010a).                                                                                         
The first paleosol evidence of decreasing rainfall 
and temperature is preserved in the Koluel-Kaike 
Formation (Early-Middle Eocene), through the change 
from plinthite aquic Ultisols to vitric udic Andisols 

showing granular or near-mollic structure (Krause 
et al., 2010a). Mammal assemblage from this period 
(‘Riochican’ SALMA), mainly composed by the first 
time by notoungulates over marsupials, included the 
first high-crowned (protohypsodont) mixed-feeders, 
linked to initial grassland expansion (Ortiz Jaureguizar 
and Cladera, 2006). This trend is confirmed by the 
subsequent stage defined by the lower section of the 
Sarmiento Formation studied herein (Cañadón Vaca 
and Gran Barranca Members), which comprises the 
45-38.5 Ma interval. This unit records the enduring 
eolian accumulation of fine-grained pyroclastics on 
loessic plains, ponds and subordinated and non-perma-
nent rivers (Bellosi, 2010b). Soils formed on ash-rich 
substrates vary according to landscape persistence, 
from vitric Entisols to mollic Andisols and andic 
Alfisols. These paleosols developed in seasonal, 
subhumid and warm-temperate conditions (MAP 
600-900 mm, MAT 12-10o C). ‘Barrancan’ (42-39 Ma)                                                                                    
phytoliths, produced by palms, grasses, and subordi-
nated sedges, dicot trees, shrubs and aquatic herbs, 
record an open mixed vegetal community similar to 
subtropical grass-dominated savannas and grasslands, 
dominated by panicoid taxa (Zucol et al., 2010). 
Primal rise of grassy habitats was favored by the 
particular advantage of grasses to settle in fecund 
young substrates and fresh sediments (Retallack, 
2001b). This was probably the case of central Patagonia 
Middle Eocene, characterized by iterative ash falls 
transformed in fertile soils. Fossil calcareous soils 
or pedocals reflect dry climate with insufficient soil 
moisture to leach carbonate. The older calcic Andis-
ol in Central Patagonia Paleogene is in the middle 
section of the GBM at Gran Barranca (Bellosi and 
González, 2010), dated in 39.86 Ma (Ré et al., 2010; 
Dunn et al., 2013), while the older andic Aridisol 
(Bellosi et al., 2002) occur in the Rosado Member 
(~38.3 Ma; Ré et al., 2010; Dunn et al., 2013). Both 
examples evidence xeric conditions since late Middle 
Eocene. This cooling-drying trend is also expressed 
by fossil Xenarthrans, since ‘Vacan’ ones lived in 
warmer environments than ‘Barrancan’ ones (Carlini 
et al., 2010).

Open grassy habitats extended originally in mid 
latitudes (44-46oS) of Central Patagonia during the 
Middle Eocene, as replace vegetation of subtropical 
forests owing to dryer and cooler conditions, the 
effect of fires (Bond et al., 2005) or by the expan-
sion of grassy-patches in heterogeneous ecosystems 
(Strömberg, 2011). Woodburne et al. (2013) also noted 
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that the middle Eocene global drop in temperatures 
after the EECO resulted in the development of more 
open areas with grasses. Bredenkamp et al. (2002) 
inferred a similar change in southern Africa. This 
process was simultaneous with diversification of 
open-habitat grasses in the Middle Eocene (Ström-
berg, 2011), probably responsible of the increased 
cursorial hervibore niches corresponding to the 
‘Vacan’ fauna (Woodburne et al., 2013). 

The advent of open grassy habitats in central 
Patagonia precedes in 7 m.y. the oldest increase in 
hypsodonty, detected in 23% of the Mustersan (38 Ma)                                                                                       
notoungulates (Kay et al., 1999; Kohn et al., 2004; 
Madden et al., 2010). A similar diachrony but of 
opposite sense is observed in native mammals from 
North America Great Plains (Jardine et al., 2012). 
The Patagonian case would indicate that herbivores 
did not ingest grasses or were adapted to other source 
of dietary abrasives (Madden et al., 2010) such as 
grit or soil. The former alternative seems unlikely 
considering: 1. abundance and diversity of dung 
beetle brood balls in Middle Eocene-Early Miocene 
paleosols of the Sarmiento Formation (Bellosi et al., 
2010; Sánchez et al., 2010a), and 2. high content of 
grass phytoliths added as dung fibers in beetle balls 
(Sánchez et al., 2010b). Therefore, an emerging 
question is how long did Patagonian mammals need 
to develop hypsodonty?

The negligible number of grass pollen in 
Paleogene-Early Neogene sequences of Patagonia 
seems to refute the existence of open grassy habitats 
(Palazzesi and Barreda, 2007, 2012), despite grasses 
were widespread in the end of the Eocene (Muller, 
1981; Soreng and Davis, 1998). Grass pollen scarcity 
would be related to its rapid degradation and reduced 
preservation capability in dry or well-drained soils 
(Bryant et al., 1994). Paleosols of the lower Sarmiento 
Formation from Cañadón Vaca and Gran Barranca 
localities (Bellosi and González, 2010) demonstrate 
that such conditions prevailed in Central Patagonia 
since the Middle Eocene. Precisely, the expansion of 
grass-dominated habitats took place in dry periods 
(Wooller y Beuning, 2002).

6. Conclusions

Despite the chronologic adjustment of the studied 
succession pre-42 Ma is still deficient, the paleosol 
succession of the Sarmiento Formation at Cañadón 
Vaca suggests that Central Patagonia ecosystems 

supported a significant modification since the 
Middle Eocene (~45 Ma), through the expansion 
of open-herbaceous communities with grasses. This 
flora settled in fertile, ashy and non-calcic soils, 
with granular structure and abundant pellets, under 
subhumid, seasonal and warm-temperate conditions. 
Considering the evidence of wet subtropical forested 
landscapes preserved in the underlying Early Eo-
cene Koluel-Kaike Formation, the Middle Eocene 
Sarmiento Formation constitutes a record of cooler 
and dryer environments linked to the beginning of 
the greenhouse-icehouse transition. Similar modi- 
fications in ecosystems were recognized in the 
Late Eocene (35 Ma) of Nebraska and the Early 
Oligocene (30 Ma) of Oregon (USA), according to 
the  abundant grass phytoliths, cursorial and lopho-
dont mixed browser-grazer mammals and granular 
calcic paleosols (Retallack et al., 2000; Janis et al., 
2002; Strömberg, 2002, 2004; Retallack, 2009). 
Divergences in age between these regions must be 
explained. The most simple is that Patagonia was 
earlier affected by the post-EECO cooling trend due 
to proximity to Antarctica, the first continent that 
supported Cenozoic glaciation. But other geographic 
or global causes should be also investigated.   
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