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ABSTRACT. The Duque de York Complex (DYC) is part of the low grade metamorphic accretionary complexes of the
pre-Andean Patagonian ‘basement’. It is a sedimentary succession exposed along the western margin of southernmost
South America. New U-Pb zircon ages and palynological data restrict the maximum depositional age of the DYC to the
limit between the early Permian (Kungurian) and the middle Permian (Roadian). The palynological association recorded
in the DYC, characterized mainly by Gymnospermopsida pollen, indicates a humid environment of forest with an under-
growth of ferns. Regional paleogeographic correlations point out that an interpretation of DYC as an autochthonous terrane
cannot be discarded, contrasting with previous hypotheses which suggest an allochthonous character for this complex.
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RESUMEN. Edad pérmica de sedimentacién de las metaturbiditas del Complejo Duque de York, sur de Chile:
datos mediante U-Pb SHRIMP y palinologia. El Complejo Duque de York (CDY) forma parte de los complejos
metamoérficos acrecionarios del ‘basamento’ pre-Andino de la Patagonia, correspondiendo a una sucesion sedimentaria
que aflora a lo largo del margen occidental austral de Sudamérica. Nuevas edades U-Pb en circon, en combinacién
con informacion palinolégica, permiten acotar la maxima edad de depdsito posible del CDY al limite entre el Pérmico
temprano (Kunguriano) y el Pérmico medio (Roadiano). La asociacion palinolégica registrada en el CDY esta caracte-
rizada por Gymnospermopsida, e indica un ambiente himedo de bosque con sotobosque de helechos. Las correlaciones
paleogeograficas apuntan a que la condicién de terreno autdctono del CDY no puede ser descartada, lo que se contrapone
a hipdtesis anteriores, las que sugieren un caracter aléctono para este complejo.

Palabras clave: Palinologia, Datacién U-Pb, Complejo Duque de York, Terrenos, Gondwana, Chile.
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1. Introduction

The Duque de York Complex (DYC) is one of the
metamorphic complexes that form the pre-Andean
Patagonian ‘basement’ rocks, which crop out ex-
tensively along the western edge of South America
south of 50°S. These rocks have been generally
considered as part of the late Paleozoic-carly Me-
sozoic accretionary prism built at the paleo-Pacific
(Panthalassan) margin of Gondwana (e.g., Hervé et
al., 1981; Forsythe, 1982). The accretionary orogenic
belt that formed on this margin is one of the largest
known orogenic belts in Earth history, and now oc-
cupies the eastern third of Australia, New Zealand,
West Antarctica, the Transantarctic Mountains and
large parts of southern South America (Vaughan et
al., 2005). This orogenic belt has been termed in two
different ways depending on the interval considered:
the Proterozoic and Paleozoic Terra Australis orogen
(Cawood, 2005), and the Paleozoic and Mesozoic
Australides (Vaughan et al., 2005). It has been re-
garded as a collage of accreted terranes-terranes
being fault-bounded packages of rocks of regional
extent characterized by a geological history that
differs from that of neighboring terranes (Howell
et al., 1985; Vaughan et al., 2005).

The DYC corresponds to a widespread low grade-
metasedimentary succession that crops out along the
Madre de Dios and Diego de Almagro archipelagos
(50°00°-51°50°S) and at the Ramirez, Contreras and
Desolacidn islands (51°50°-53°00°S), in southern
Chile (Fig. 1A). Forsythe and Mpodozis (1979, 1983)
interpreted the DYC as a continent-derived detrital
succession that was deposited over two coeval late
Paleozoic exotic oceanic units, as they approached the
continental margin of Gondwana. The DYC together
with the oceanic units, defined as the Madre de Dios
Accretionary Complex (MDAC) by Thomson and
Hervé (2002), were then tectonically amalgamated to
the forearc of this margin by subduction processes,
resulting in an intricate tectonic interweaving. These
complexes were intruded by the South Patagonian
Batholith (SPB) in the Early Cretaceous (Halpern,
1973; Dubart et al., 2003; Hervé et al., 2007a).

For a long time, the accretionary complexes that
compose the MDAC have been considered of exotic
or allochthonous origin, or at least, as suspect terranes.
Terranes are ‘suspect’ if there is doubt about their
paleogeographical setting with respect to adjacent
terranes or continental margin (Coney et al., 1980;
Coombs, 1997), and may be described as ‘exotic’,

‘far-travelled’ or ‘allochthonous’ (all meaning about
the same thing) if there is sufficient evidence that
they originated far from their present locations, often
assumed to be hundreds or thousands of kilometers
away (Vaughan et al., 2005). The consideration
of the MDAC as suspect and potentially exotic is
based mainly on its fossil content and the inferred
depositional setting for them (in the case of the TL
and the coeval DC) (e.g., Ling et al., 1985; Ramos,
1988) and on the impossibility to find a contem-
poraneous magmatic arc as the source of Permian
zircons for the DYC anywhere at a similar latitude
in southern Patagonia (Hervé et al., 2003; Hervé and
Mpodozis, 2005; Hervé et al., 2006). The latter has
led to propose that the deposition of the DYC took
place at high southern latitudes along the Antarctic
sector of the Gondwana margin (Lacassie, 2003;
Lacassie et al., 2006). However, derivation of the
DYC from lower and warmer latitudes is a hypothesis
that cannot be ruled-out.

The lack of index fossils in the DYC has prevented
an accurate determination of the depositional age of
this complex. In consequence, a late early Permian
maximum depositional age has been established by
the use of the youngest detrital zircon population in
these metasediments (Hervé et al., 2003). Neverthe-
less, the use of the youngest detrital zircon age or
population in a sediment as a limit for the age of
deposition has been questionable for both geologi-
cal (there is no necessary connection between the
timing of zircon-generating events in a source region
and the age of final deposition of a sediment eroded
from this source) and statistical reasons (Andersen,
2005). In this context, this paper presents the first
palynological study in rocks of the DYC and it also
corresponds to the first record of late Paleozoic
palynomorphs in Chile. The aim of this work is to
restrict the age range of the DYC by the combination
of the palynological results with new U-Pb SHRIMP
ages in key samples, and also gives a revision of
the paleoenvironmental and geochronological data
regarding the place and timing of deposition of the
DYC. The conclusions derived from this work al-
low giving some new considerations focused on the
supposed allochthonous character of the MDAC, and
especially of the DYC.

2. Geological background

The rocks of the studied area were first recog-
nized by Cecioni (1955, 1956), who determined
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the presence of upper Paleozoic sediments in the
Patagonian archipelago, distinguishing fusulinids
as well as the low grade-metamorphic character
of these rocks. The geology of the Madre de Dios
Archipelago was studied in detail by Forsythe and
Mpodozis (1979, 1983) and Mpodozis and Forsythe
(1983), who distinguished three metamorphic com-
plexes that made up the MDAC (Fig. 1B):

a. the Denaro Complex (DC), formed by tho-
leiitic basalts with E- and N-MORB signatures
(Hervé et al., 1999; Sepulveda et al., 2008), banded
radiolarian and metalliferous cherts, pelites and
calcarenites. This complex represents fragments
of ocean floor and its sedimentary cover (late
Carboniferous-early Permian, according to Ling
et al., 1985),
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b. the Tarlton Limestones (TL), formed by
fusulinid-bearing massive limestones, deposited in
an intra-oceanic carbonate platform during Middle
Pennsylvanian-early Permian times (Cecioni, 1956;
Douglass and Nestell, 1972, 1976),

¢. the Duque de York Complex (DYC), formed
by a thick succession of greywackes, pelites, and
minor conglomerates of continental provenance,
and deposited on top of DC and TL. Based on field
observation, Faindez et al. (2002) described the
DYC as being formed by metaturbidites. Also, it
has been indicated that this succession has early
Permian radiolarian cherts at Desolacion Island (A.
Yoshiaki, written communication, 2002; in Hervé et
al., 2007b). Owing to the accretionary processes,
most contacts among these units are of tectonic
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FIG. 1. A. Sketch map showing the distribution of the DYC; B. Geological map of the Madre de Dios Archipelago (after Forsythe and
Mpodozis, 1983; Lacassie ef al., 2006; Sepulveda et al., 2008). 1. Quaternary deposits; 2. South Patagonian Batholith (SPB);
3. Tarlton Limestones (TL); 4. Denaro Complex (DC); 5. Duque de York Complex (DYC); 6. Unmapped basement; 7. Sill.
Sampling sites are marked with black circles; all for palynology except FO04-21; FO04-21 and FO04-22 for U-Pb Shrimp dating.
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origin (Fig. 2), but few examples of depositional
contacts have been recognized. In fact, the preserved
stratigraphic relations confirm that the DYC has
both unconformable and conformable depositional
contacts with the other complexes (e.g., Lacassie
et al., 2006).

All these units where metamorphosed under the
conditions of pumpellyite-actinolite facies in a frontal
accretionary wedge (Sepulveda, 2004; Sepulveda et
al., 2008) during Middle Triassic to earliest Jurassic
times, as indicated by in situ At/Ar UV-LAMP ages
on phengites (Willner ef al., 2009). Thomson and
Hervé (2002) used zircon fission track data to point
out that the metamorphism that affects the DYC, and
also the underlying TL and DC, took place during
or before the earliest Jurassic (ca. 195 Ma). This
information constrains the minimum probable age
of deposition for the DYC, and demonstrates that,
in this area, the metamorphism occurred prior to the
emplacement of the SPB in the Early Cretaceous.
The isotopic ages of the SPB, in the outcrops ad-

FIG. 2. Outcrops at Madre de Dios Island, where tectonic contact
(dashed line) between deformed metasediments of the
DYC (brown) and massive limestones of the TL (white)
is partly observed.

jacent to the contact with the MDAC, are 133-112
Ma (Rb-Sr whole rock and biotite isochron, Hal-
pern, 1973), 130-143 Ma (K-Ar biotite, Duhart et
al., 2003) and ca. 133 Ma (U-Pb SHRIMP zircon,
Hervé et al., 2007a).

U-Pb SHRIMP detrital zircon ages from sand-
stones of the DYC reveal that the youngest main
opulation, and hence the maximum possible de-
positional age, is late early Permian (ca. 270 Ma)
(Hervé¢ et al., 2003). The geochemical study of
Lacassie et al. (2006), complementing the data and
refining the conclusions of Falindez et al. (2002),
indicates that the DYC sandstones and mudstones
had their source in a volcanic arc of granodioritic
average composition located relatively proximal to
the depositional basin, and whose plutonic roots
had been exposed by erosion. Also, they propose
that the DYC was deposited in a tectonic setting
corresponding to an active continental margin,
possibly located along the Antarctic segment of
the Panthalassan Gondwana margin.

2.1. Paleogeographic setting

The fusulinid fauna in the TL shows that these
carbonate sedimentary rocks must have been
deposited in marine warm water (Douglass and
Nestell, 1976). Similarities between the fossil
content of the TL with those of the backarc
marine carbonate deposits of the late Paleozoic
Copacabana Formation in Peru and Bolivia (Ca-
brera La Rosa and Petersen, 1936; Chamot, 1965;
Mamet, 1996), indicates that deposition of TL
occurred in low latitude zones (ca. 20°S) during
the late Carboniferous-early Permian (Lacassie,
2003). However, recent paleogeographic recon-
structions for those periods (Torsvik and Cocks,
2004; Veevers, 2004; Cocks and Torsvik, 2006;
Cawood and Buchan, 2007) locate the portion
of the Gondwana margin where the Madre de
Dios archipelago is presently situated at a high
southern latitude, well outside the tropical zone
where the TL is likely to have been deposited.
Also, it is indicated that the late Paleozoic
Ice Age in Gondwana was active between the
Carboniferous and the early Permian (Isbell et
al., 2003; Isbell et al., 2005; Lépez-Gamundi,
2005; Buatois et al., 2006; Fielding et al., 2008;
Rocha Campos et al., 2008). These facts, together
with the contemporaneity of the TL with the ocean
floor deposit of the DC (Ling et al., 1985; Ling
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and Forsythe, 1987) lead to the conclusion that
the MDAC represents an allochthonous or exotic
terrane derived from lower latitudes and accreted
via subduction processes to Gondwana (Ramos,
1988). The timing of the accretion of these units
would be bracketed between the maximum age of
deposition of the DYC (ca. 270 Ma; Hervé et al.,
2003) and the minimum age of metamorphism (195
Ma; Thomson and Hervé, 2002).

The apparent lack of a Permian magmatic arc in
southernmost Patagonia allowed Lacassie (2003)
and Lacassie et al. (2006), following Hervé et al.
(2000) and Cawood et al. (2002), to propose that
the accretion of the TL and the DC would have
occurred against the Antarctic-Australian segment
of the Gondwana margin, from where both would
have been displaced by dextral translation, together
with the DYC, as a coherent block to their current
position. In addition, Lacassie et al. (2006) show
that the DYC metasediments share important
petrographic, geochemical and geochronological
characteristics with metaturbidites present in the
Rakaia Terrane in New Zealand and with the east-
ern (Triassic) Le May Group in Alexander Island.
These similarities point towards similar igneous
sources for the three successions, suggesting that
they were coevally deposited along the same active
continental margin (Lacassie et al., 2006). This
margin was probably located along the Antarctic
sector of the Panthalassan Gondwana margin, as
favored by the studies of Willan (2003) for the
source area of the Le May Group, and of Wandres
et al. (2004) and Wandres and Bradshaw (2005)
for the source area of the Rakaia terrane. The last
two studies indicate that the origin of the Permian
detritus in the Rakaia terrane would be in the igneous
rocks of the Amundsen and Ross Provinces, East
Antarctica, which during the Permian were close to
60°S (Veevers, 2004; Cawood and Buchan, 2007).
If the source of Permian detritus was the same for
these three successions (DYC, Rakaia Terrane and
Le May Group), this would imply dextral strike-
slip displacement of the MDAC along the SW
Gondwana margin from these high latitude to its
present position.

On the other hand, paleomagnetic information
on the TL and the DC demonstrate that, after Early
Cretaceous remagnetization produced by the ther-
mal influence of the SPB, both units underwent
a counter-clockwise rotation of ca. 117° with an
inappreciable latitudinal change (Rapalini e? al.,
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2001). This evidence, coupled to the structural data
of Forsythe and Mpodozis (1979, 1983), allowed
Rapalini ez al. (2001) to propose that the former
units have been accreted to the Gondwana margin
from the NW rather than from the SW, as had been
previously considered (Forsythe and Mpodozis,
1983; Ling and Forsythe, 1987). That agrees with
the early hypothesis of Ozawa and Kanmera (1984),
which suggested the north-western Pacific area for
the origin of the exotic oceanic units of the MDAC,
and is also consistent with the sinistral sense of
shear of main structures parallel to the margin of
South America (Cunningham, 1993; Olivares et al.,
2003). These interpretations are coherent with the
migration of the Antarctic Peninsula towards the
south starting in the latest Jurassic (Hervé et al.,
2006; Konig and Jokat, 2006; Miller, 2007), which
was situated parallel to the west of Patagonia at that
time (Miller, 2007, and references therein). Moreover,
it is suggested that the late Triassic deformation in
northern Antarctic Peninsula (Peninsula Orogeny),
which affects the Trinity Peninsula Group accre-
tionary complex (TPG, Hyden and Tanner, 1981),
is associated with sinistral strike-slip movements,
while dextral strike-slip is mainly a Cretaceous
phenomenon in the Antarctic Peninsula (written
communication, A. Vaughan, October 2006).

The deposition of sediments of the DYC in
high southern latitudes (Lacassie, 2003; Lacassie
et al., 2006), contrasts with the second scenario,
which involves deposition of the DYC in lower
and warmer latitudes, perhaps associated with
subsequent sinistral strike-slip movements of the
entire MDAC along the Panthalassan margin of
Gondwana.

3. Sampling and Methods

Palynological data were acquired from one
sample of limestone of the TL and seven samples
of metasediments of the DYC: five from Madre de
Dios Archipelago and two from Diego de Almagro
Archipelago (Table 1; Fig. 1). All samples were
processed by standard palynological methods. All
but one of the samples (MD05-20 from Guarello
Island) yielded poorly preserved palynomorphs. The
study and the description of the specimens were
made with an optical microscope. The slides are
housed at the Laboratory of Paleopalynology of the
Departamento de Ciencias de la Tierra, Universidad
de Concepcidn under codes 1396 to 1401.
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Two metasedimentary samples (FO04-21
and FO04-22) from the units of the MDAC were
collected for U-Pb zircon dating by SHRIMP RG
(sensitive high resolution ion microprobe, reverse
geometry) at the Research School of Earth Scien-
ces, The Australian National University. Zircon
grains were separated from total rock samples
using standard crushing, washing, heavy liquid
and paramagnetic procedures. The zircon-rich
heavy mineral concentrates were poured onto
double-sided tape, mounted in epoxy together with
chips of the reference zircons (FC1 and SL13),
sectioned approximately in half, and polished.
Reflected and transmitted light photomicrographs
were prepared for all zircons. Cathodolumines-
cence (CL) Scanning Electron Microscope (SEM)
images were prepared for all zircon grains. The
CL images were used to decipher the internal
structures of the sectioned grains and to ensure
that the ~20 um SHRIMP spot was wholly within
a single age component (usually the youngest)
within the sectioned grains.

The U-Th-Pb analyses were made using
SHRIMP RG. The zircon grains were analyzed
sequentially and randomly. Each analysis consisted
of 4 scans through the mass range, with a reference
zircon analyzed for every five unknown zircon
analyses; SHRIMP analytical method follows
Williams (1998, and references therein). The

data have been reduced using the SQUID Excel
Macro of Ludwig (2001). The U-Pb ratios have
been normalized relative to a value of 0.01859 for
the FC1 reference zircon, equivalent to an age of
1,099 Ma (Paces and Miller, 1993). Uncertaintics
given for individual analyses (ratios and ages)
are at the one sigma level (Tables 2 and 3). Tera-
Wasserburg concordia plots, probability density
plots with stacked histograms and weighted mean
206Ph/238U age calculations were carried out using
ISOPLOT/EX (Ludwig, 2003). The ‘Mixture Mo-
delling’ algorithm of Sambridge and Compston
(1994), via ISOPLOT/EX, was used to un-mix
statistical age populations or groupings; from
these groups weighted mean Pb/?8U ages were
calculated and the uncertainties are reported as
95% confidence limits.

An estimate for the maximum age for the
deposition of the sediment sample may be de-
termined from the weighted mean age of the
youngest peak in these distributions, where >3
analyses are within analytical uncertainty. Such
an age grouping has taken into account isolated
cases of inferred radiogenic Pb-loss, which can
produce minor scatter to younger ages. Ages
for individual grains are reported at the 68%
confidence level, and Geological Time Scale
referred throughout the text is that of Gradstein
et al. (2004).

TABLE 1. SAMPLES ANALYZED BY PALYNOLOGICAL METHODS.

Sample Lithology (unit) Location (coordinates)

MD04-1 black shale (DYC) 50°25°43.2”’S; 75°19°33.1"W
FO04-22 sandstone (DYC) 50°25°43.2”’S; 75°19°33.1"W
MD05-3 calcareous sandstone (DYC) 50°21°54.1”’S; 75°19°53.8”W
MD05-20 sandstone (DYC) 50°22°46.4’S; 75°19°01.1"W
MDO06-7 limestone (TL) 50°18’14.2”S; 75°20°17.2"W
MD06-10 sandstone (DYC) 50°19°07.6”’S; 75°21°50.1”W
DA-28 sandstone (DYC) 51°30°40.5”S; 75°06°21.3”W
DA-29 shale (DYC) 51°30°40.5”S; 75°06°21.3"W
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4. Results
4.1. Palynology

The palynological analysis revealed a palynoflora
composed predominantly by Gymmnospermopsida
monosaccate pollen grains, although Gymnosper-
mopsida bisaccate pellen grains were also observed.
Selected species are illustrated in figure 3. The samples
show a very low frequency of palynomorphs, and in
most cases an exact identification of the species is
impossible because of the bad preservation state of
the palynomorphs.The palynomorphs detected within
the TL are Punctatisporites punctatus (Ibrahim)
Ibrahim, a Pteridophyta known from the Carboni-
ferous to Triassic in New Zecaland, Australia, Asia,
Europe and South America (Alpern and Doubinger,
1973, Owens et al., 2002; Pérez Loinaze, 2008).

The palynological association observed in the
metasediments of the DYC (sampled in the Madre
de Dios Archipelago and in the Diego de Almagro
Island) is characterized by Gymnospermopsida po-
llen. In addition, Pteridophyta spores as well as rare
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green algae (Botryococcus braunii Kiitzing, Lower
Carboniferous to Recent) and epiphyllous fungal
spores (Granatisporites and Multicellaesporites
spp.) have been observed. The Gymnospermopsida
include Coniferales and Cordaitales. The more fre-
quent monosaccate pollens are Plicatipollenites and
Cannanoropollis spp., which are also represented
in the Carboniferous-Permian of Gondwana (e.g.,
Vergel, 2008; Di Pasquo, 2009). The bisaccate pollen
grains of Gymnospermopsida are assigned to the
Protohaploxypinus sp., also known in middle Car-
boniferous successions of Argentina, but recognized
also in the Permian of Brazil, South Africa, India,
Antarctica, Australia and North America (Césari and
Gutiérrez, 2000, and reference therein). Remnants
of polyplicate and monccolpate pollen grains, of 80-
95 um, assigned to Praecolpatites sinuosus (Balme
and Hennelly) Bharadwaj and Srivastava, have been
observed (sample FO04-22, Fig. 4). They have broad
distribution in the Permian of Argentina, Brazil,
Australia, Africa, Antarctica and New Zealand (e.g.,
Lindstrom, 1995). Therefore, a Permian age for the
deposition of the sediments of the DYC is inferred.

FIG. 3. Selected pollen grains, spores and algae from the studied samples. Black line represents 10 pm, A, Granatisporites sp.; B.
Protokaploxypinus sp.; C. Cannanoropollis sp.; D. Botryococcus braunii; E. Punciatisporites punctatus, B. Plicatipolienites sp.
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In addition, a humid environment of conifer and/
or cordaitales forests with an undergrowth of ferns
(probably developed on wet shaded slopes) is pro-
posed from the palynological association recorded
in the DYC.

4.2. Petrography

The metasedimentary samples collected for U-Pb
zircon dating were obtained from an outcrop where
the DC and the DYC are in conformable and inter-
calated stratigraphic contact (Fig. 4). Significantly,
this site corresponds to one of only two localities
were this type of contact between these complexes
is recorded. The samples were spatially associated,
stratigraphically separated by ca. 10 m. The first
sample (FO04-21) comes from a deformed (folded)
metasedimentary horizon (0.04 to 0.06 m thick) of
tuffaceous character, interbedded in metacherts of
the DC. The microscopic petrographic description of
this sample shows that it is mainly composed by very
angular fragments (0.01-0.2 mm) of quartz (55%),
altered feldspars (30%) and biotite flakes (15%)
in a cryptocrystalline siliceous matrix. Accessory
minerals include zircon, garnet, sphene, apatite and
Fe-oxides. Scarce small and highly altered shard

oriented parallel to the contacts with the underlying
radiolarian chert. This last feature coupled with the
normal grading observed in this bed agrees with
subaquatic conditions of deposition. The second
sample (FO04-22) is a quartz rich metasandstone
of the DYC previously analyzed by palynological
methods. The sample was extracted from a massive
and structureless sandstone bed (20 m of minimum
thickness) nearly 3 m above the contact with the
banded cherts of the DC. It is a feldspathic arenite
formed by well to moderately sorted subangular and
highly spherical fragments, with sizes between 0.02
and 1.2 mm (0.3 mm in average). Main fragments
are quartz (60%), feldspars (30%), biotite (8%) and
white mica (2%). Accessories include zircon, apatite,
lithic fragments (basalts and rhyolites), garnet, pyrite
and Fe-oxides.

4.3. U-Pb SHRIMP ages of detrital zircons

The Tera-Wasserburg diagrams plot the total
ratios, uncorrected for common Pb, and show that
the data generally plot close to Concordia (Fig. 5).
Relative probability spectra of the detrital zircon
ages are presented in figure 5. For sample FO04-21
54 grains were analyzed, whereas 42 grains were

fragments were also observed. The biotites are examined for sample FO04-22,
A) B) Seno Contreras
DYC
004-22 (289.7 + 2.1 Ma)
Praecolpatites sinuosus
4 < MDO41
20m
DC FVF—————— «— rosaz12roaz27mm
0

3

mi=N =

FIG. 4. A. Outcrops at Seno Contreras, where the stratigraphical contact between deformed banded cherts of the DC (above the white
line) and shales and sandstones of the DYC (below) is observed; B. Stratigraphic column showing the disposition of the samples
analyzed by U-Pb SHRIMP and by palynological methods. 1. Sandstones; 2. Banded cherts; 3. Shales; 4. Tuffaceous layer.
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FO04-21. The zircons of this sample are prismatic
and euhedral crystals, with zoned magmatic internal
structures as seen under CL imaging (Fig. 6). This
is compatible with its textural and mineralogical
characteristics, which are indicative of the tuffaceous
character of the metasediment. Although some of
the youngest individual ages involve significant
common Pb correction (Fig. 5); a correction has
been applied to derive the radiogenic ratios and age
of these analyses (Table 2). The age spectrum shows
a narrow range of provenance ages with a major
peak in the early middle Permian, representing ca.

08

04

lﬂ1Pb
lﬂHPb

02

0.0

0.14

FO04-22

012

0.06 [

0.04
0 4 8 12 18 20 24 28 32

b Vo

FIG. 5. Tera-Wasseburg diagrams for zircon U-Pb data. Analyses
are plotted as total ratios calibrated for U-Pb, but un-
corrected for common Pb. The error ellipses are 68.3%
confidence limits. The dotted arrow in FO04-21 shows
the direction of common Pb at 270 Ma. Alignment along
this arrow suggests a real inferred age on Concordia
with variable degrees of incorporated common Pb at
the time of crystallization.
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76% of the analyses. Minor peaks are observed in
the Carboniferous, Devonian, Ordovician, Cambrian
and Neoproterozoic, each one equivalent to less
than 8% of the total analyzed grains. The Permian
analyses yield a weighted mean 2Pb/?*U age of
270.4+2.7 Ma (MSWD=1.2), interpreted as the
maximum possible depositional age of the analyzed
metasediment.

FOO04-22. The zircon grains show zoned internal
structures (Fig. 6), and subrounded to subangu-
lar shapes with high sphericity are predominant,
although prismatic grains are observed as well.
The grains analyzed from this sample are very low
in common Pb. The relative probability plots of the
detrital zircon ages display a prominent component
in the early Permian (ca. 40% of the analyses),
with other subordinate peaks in the Carboniferous
and Devonian (ca. 17% of the analyses each one).
There are scattered older ages ranging from Early
Paleozoic to Neo and Mesoproterozoic aged noise
and one Paleoproterozoic aged zircon. A weighted
mean 2°Pb/2*U age of 289.7+2.1 Ma (MSWD=1.3)
place a constraint on the maximum age of deposition
of this metasediment.

5. Discussion
5.1. Regional paleoenvironmental conditions

As pointed out by Clneo (1996) and Buatois et
al. (2006), it seems that the end of the late Paleozoic
Ice Age in Gondwana is diachronous, waning first
in South America, as revealed by litho- and bio-
stratigraphic records (ca. 280 Ma; lannuzzi et al.,
2007), and then in Australia (ca. 260 Ma; Fielding
et al., 2008). This diachronism has been habitually
attributed to the Gondwana drift across the South
Pole (Lopez-Gamundi et al., 1994; Visser, 1996),
but the possibility of more than one glacial event
cannot be ruled out (Limarino ef al., 2006). Roscher
and Schneider (2006) show that there is a general
trend of aridization in the Permo-Carboniferous
interrupted by wet phases related to the waxing and
waning of the Gondwana icecap. Lindstrém and
McLoughlin (2007) indicate that during the middle
to late Permian a gradual warming trend is evident
from the western to the eastern parts of Gondwana.
Furthermore, semiarid and arid climatic conditions
in middle Permian times appear like a common
feature in many western Gondwana basins (Lopez-
Gamundi et al., 1992; Limarino et al., 2006; Spalletti
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and Limarino, 2006; Souza et al., 2007), while the
start of arid conditions in western Gondwana has
been situated towards the end of the early Permian
by Césari et al. (2007).

Palynomorphs documented in this study are
comparable to those recorded in Carboniferous and
Permian strata of other late Paleozoic Gondwanan
basins, such as those exposed in the Chaco-Parana
Basin in Argentina and Uruguay (Césari et al., 1995;
Beri et al., 2006), and at Rio Grande do Sul in Paran&
Basin, Brazil (Souza and Marques-Toigo, 2005). It is
noteworthy to emphasize that the only palynomor-
ph with exclusive Permian record (Praecolpatites
sinuosus) is in one of the samples with a Permian
maximum depositional age (Fig. 4). Regarding the
paleoenvironmental background mentioned above
and the Permian age obtained in the DYC, the pro-
posed paleoclimatic setting for the deposition of the
late Paleozoic basins of southwestern Gondwana,
in particular those situated in Patagonia, helps to
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FIG. 6. U-Pb zircon age
provenance pat-
terns (age versus
relative proba-
bility) of the
analyzed sam-
ples. Insets show
the entire popu-
lation of zircon
ages. Montages
of representative
portions of the
cathode-lumi-
nescence images
for each sample,
with individual
spot ages.

establish regional correlations and some paleoclimatic
inferences. Archangelsky et al. (1996) and Limarino
et al. (1996) suggested a specially humid and tem-
perate climate, even subtropical, for the deposition
of the La Golondrina Formation (the lower member
in the La Golondrina Basin, Patagonia), whose age
would be restricted between the Sakmarian and the
Kungurian (Limarino and Spalletti, 2006). The age
and paleoclimatic features of this formation are
remarkable, particularly because it crops out in a
relatively close position (ca. 500 km apart) to the
present-day position of the outcrops of the DYC
(Fig. 7). Another late Paleozoic Patagonian basin
that shares similar paleoclimatic characteristics
and also an adjacent location to the deposits of the
DYC is the Tepuel-Genoa Basin (Lopez-Gamundi
and Limarino, 1984; Andreis et al., 1987) (Fig. 7),
likely related to metamorphic rocks outcropping in
the Coastal Range of Chile (Hervé, 1988; Duhart
et al., 2001). The early Permian component of
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this basin (Sakmarian-Artinskian, according to
Césari et al., 2007) is represented by the Rio Ge-
noa Formation, whose sediments have also been
interpreted as deposited in a humid and subtropical
climate (Archangelsky et al., 1996; Limarino et al.,
1996). However, it is not possible to determine a
more precise paleoclimatic connection with the La
Golondrina Formation, mostly because late early
Permian (Kungurian) sedimentary rocks have not
been identified in the Tepuel-Genoa Basin (Lima-
rino and Spalletti, 2006). If it is assumed a fixed
position of the DYC with respect to Patagonia since
its deposition, and considering the previous exam-
ples and the age obtained for the DYC, it would be
probable that warm paleoclimatic conditions were
recorded in the metasediments of this complex.
This was, however, impossible to register in this
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study, mainly due to the very low proportion of
palynological material in the samples.

Even though we cannot precise the paleoclimatic
conditions during the deposition of the DYC, some
observations can be done. The types of deposits ac-
cumulated as a consequence of ice activity are very
varied, and several non-glacially related mechanisms
can produce similar deposits. The recognition of
these accumulations is more difficult if we consi-
der that glacial deposits are frequently reworked in
outwashes or by mass flow. For these reasons, the
assignment of a glacial origin to any deposit, or its
refutation, needs the combination of the properties of
the deposit itself, the adjacent rocks units, as well as
climatic and paleogeographic conditions at the time
of deposition (e.g., Charrier, 1986). Additionally, to
establish that a sedimentary succession, or part of it,

.........

FIG. 7. Paleogeographic reconstruction
for South America in the early
Permian, based on the pole of
Rapalini et al. (2006). Positions
of the late Paleozoic basins (from
Limarino and Spalleti, 2006),
Choiyoi deposits (modified from
Kay et al., 1989; Ramos, 2000),
and the current location of the
outcrops of the Madre de Dios
Accretionary Complex (MDAC)
and the Trinity Peninsula Group
(TPG) are shown, as well as the
probable position of the Antarctic
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preserves a record of glacial, proglacial or periglacial
depositional environments, multiple facies criteria
are needed (diamictites, chaotic fabrics, rhythmites,
laminated mudrocks with outsized dispersed clasts
(lonestones), striated pavement, and faceted, bullet-
shaped and striated clasts, among others; Miller,
1996), or it is required a single criterion that unam-
biguously appears to indicate glacial influence by
virtue of its occurrence out of context with enclosing
facies (e.g., Fielding et al., 2008). In this context,
even though there have been records of diamictites
in the DYC (Cecioni, 1956; Forsythe and Mpodozis,
1983), this does not give conclusive evidence of a
glacial environment of deposition. Moreover, there
are only few localities in the whole extension of this
accretionary complex (more than 1,000 km?) where
diamictites have been identified, but the existence of
glacial characteristics sensu stricto like lonestones
(dropstones), striated pavements or faceted clasts
have never been reported.

The large extension and volume of the DYC
could be attributed to the great volume of fresh
water produced by ice-melting during the waning of
the glaciation in Gondwana (Buatois e al., 2006).
This huge volume of water probably reworked large
amounts of sediments that were subsequently deposi-
ted at the margins of the continent. The ichnofaunas
registered in DYC (Scalarituba isp., Chondrites isp.,
Planolites isp., Palaeophycus isp. and Ancorichnus
isp.; in Lacassie, 2003), are distinctive of marine
environments (written communication, L. Buatois,
January 2008), and the low content of palynological
material in the samples suggests a marine offshore
environment of deposition of the host rocks. Both
proposals match with the interpretation of the DYC
rocks as turbidites, and would exclude a fjord-like
setting for the origin of this succession and indicate
that the place of deposition of the DYC was located
far away from the direct influence of fresh water
formed during the Gondwanan deglaciation.

5.2. Age and sources of metasediments

The detrital zircon data for sample FO04-21 of
the DC reveal a maximum possible depositional age
of this tuff-rich sediment of 270.4+2.7 Ma, roughly
in the limit between the early Permian (Kungurian)
and the middle Permian (Roadian). This result is
identical to the youngest predominant detrital zircon
U-Pb SHRIMP age component previously reported
for samples of the DYC (ca. 270 Ma, Hervé et al.,

2003; Hervé et al., 2006), and suggests that this
peak is probably linked to a significant contribution
of volcanic (tuffaceous) material deposited near
the continental margin. This is also in agreement
with the age of widespread ash fall deposits and
tuffaceous horizons present in basins of the west
Gondwana (Turner, 1999; Stollhofen et al., 2000;
Lopez-Gamundi, 2006; Santos ef al., 2006, Tohver
et al., 2007), commonly correlated with the peak of
the Choiyoi silicic volcanism during the late early
Permian and middle Permian along the Andean
Cordillera and its equivalents in Patagonia (Lopez-
Gamundi, 2006).

The data obtained for sample FO04-22 of the
DYC (289.7+£2.1 Ma) indicate an early Permian
(Sakmarian) maximum possible depositional age.
This is nearly 20 m.y. older than the youngest U-Pb
SHRIMP ages component recorded for detrital zircons
in the DYC (Hervé ef al., 2003). Nonetheless, the
former authors have recognized this Sakmarian peak
(ca. 290 Ma) as an individual Permian population
in the age spectrum of the detrital zircons in the
DYC. The apparent inverted stratigraphical position
of the analyzed samples (Fig. 4) can be explained
as FO04-21 being the airborne volcanic material
deposited near the continental margin of Gondwana,
and FO04-22 as resedimented detritus, formerly
deposited somewhere between its local source area
and the final depositional site, and then redeposited
as turbidite flows above the cherts which include the
tuffaceous layer represented by FO04-21.

Augustsson ef al. (2006) suggest that the Permian
sediments present in the metasedimentary complexes
of Patagonia were probably largely supplied from local
Patagonian and West Antarctic sources. Furthermore,
Pankhurst et al. (2006) claim that the Permo-Triassic
granites present in the North Patagonian Massif
(extending between 41° and 44°S, approximately)
can be identified as the most important source so far
recognized for the provenance of detritus in the late
Paleozoic metasedimentary rocks along the Pacific
margin of Gondwana. This would imply transport
by a system of long rivers over a wide and relatively
flat pre-Andean platform (Hervé et al., 2003), or
even eolian transport over hundreds of kilometers
(e.g., Dickinson and Gehrels, 2009).

The widespread abundance of radiometric data
from ash fall deposits within the range of 280 to
260 Ma has been commonly attributed to a period
of intense silicic volcanism along the continental
margin of southwestern Gondwana that peaked
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around the 270 Ma (Lopez-Gamundi, 2006). Besides
the model of Pankhurst ef al. (2006), until now no
analogous magmatic process responsible for the
ubiquitous Sakmarian peak (ca. 290 Ma) in the U-Pb
spectrum from samples of the DYC has been clearly
identified. Similar and equivalent radiometric ages
have been obtained from adjacent late Paleozoic
basins of southwestern Gondwana. In the southern-
most Karoo Basin of South Africa, Bangert et al.
(1999) reported 288.0+3.0 and 289.6+3.8 Ma from
bentonitic tuff beds intercalated in sedimentary rocks
of the Prince Albert Formation, lower Ecca Group.
Rocha-Campos et al. (2006) and Guerra-Sommer et
al. (2008) acquired comparable Permian ages from
ash-fall deposits interbedded in coal successions of
the southern Parand Basin in Brazil. The last authors
claim that this information supports the presence of
an active and extensive volcanic event in western
Gondwana around the Carboniferous-Permian
boundary (ca. 299 Ma). It is, however, difficult
to restrict the magmatic activity in southwestern
Gondwana to a single instant in Permian times, since
most of the limited available data are in the range
of 270 to 290 Ma and usually they overlap within
their analytical uncertainty. Instead, the entire early
Permian could be regarded as a period of active and
geographically widespread magmatism in this region
of Gondwana. This scenario would also explain the
strong coincidence of the main Permian peaks in the
detrital zircon U-Pb spectrum of the metasediments
of the DYC, the Rakaia Terranc (New Zealand)
and the eastern Le May Group (Alexander Island,
Antarctica) (Lacassie ef al., 2006). Nevertheless,
the cause of the petrographic and geochemical
similaritics between these three metasedimentary
units is an issue not discussed here as it is beyond
the scope of this work.

5.3. Paleogeographic correlations

So far, there has been no consensus in the place
of accretion of the TL and DC and the supposed
subsequent sense of movement of the MDAC (as a
coherent block) along the southwestern Gondwana
margin. Lacassic et al. (2006) proposed accretion of
the DC-TL assemblage at the Antarctic-Australian
portion of the Gondwana margin, followed by
dextral translation of the MDAC (and hence of the
DYC) parallel to the margin. On the other hand, the
possibility of a virtually fixed position for the DYC
since its deposition (with Patagonia as reference) is

391

hampered by the fact that there is no clear indication
of a coeval Permian magmatic arc at latitude similar
to the current position of the MDAC in southern
Patagonia (e.g., Hervé et al., 2006). This magmatic
arc could be represented either by the Choiyoi acid
magmatic province (Kay et al., 1989; Mpodozis and
Kay, 1990) or by the Permian igneous rocks in the
North Patagonian Massif (Pankhurst et al., 2006),
both sources currently located north of the 40° and
44°S, respectively. However, the Choiyoi Formation
presents ages of ca. 281 Ma near its base (Rocha-
Campos et al., 2006; Suarez et al., 2009), and thus
cannot account for the 290 Ma peak in the U-Pb
age spectrum. Conversely, it is well known that
the subduction of bathymetrically elevated oceanic
features such as ridges or plateau (DC and TL in this
case) can flatten the subducting slab and prevent the
magmatic activity in the vicinity of the continental
margin. According to the above-mentioned situation,
the DYC would not have had displacement since
its deposition and the remnants of the associated
Permian magmatic arc could still be hidden below
the Mesozoic sedimentary cover somewhere in the
southeastern Patagonia or even farther eastward.
This option has been recently explored by Ramos
(2008), who proposes a late Paleozoic magmatic
arc with a southern extension in the NNE trending
Rio Chico-Punta Dingenes High (Fig. 7). This hy-
pothesis would preclude defining the DYC as an
allochthonous terrane. A precedent that supports this
hypothesis is the presence of metasedimentary rocks
with detrital zircons with U-Pb SHRIMP ages similar
(ca. 290 Ma) to the ones recorded in the DYC to the
east of the South Patagonian Batholith, at almost the
same latitude of the MDAC (Augustsson et al., 2006).
In brief, additional and more detailed paleomagnetic,
geochronological and isotopic work is needed to
give more convincing arguments supporting one of
the proposed hypotheses, an autochthonous or an
allochthonous origin of the DYC.

Little is known about the exact paleogeographic
configuration of the Antarctic Peninsula during the
late Paleozoic, though one of the most accepted
current paleogeographic reconstructions locate the
Antarctic Peninsula lying west of Patagonia in the
Middle Jurassic (Konig and Jokat, 2006). Therefore,
the possibility of a geological correlation between
the geologic units present in western Patagonia and
those exposed in the Antarctic Peninsula must be
considered. In this context, it has been suggested
based on the similarity of lithology and detrital zircon
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age patterns, that the Trinity Peninsula Group (TPG) is
the equivalent counterpart of the DYC in the Antarctic
Peninsula (Hervé et al., 2006) (Fig. 7). Willan (2003)
assumed that the TPG could have been derived from a
glaciated continental margin, though his result is based
only on indirect evidence (geochemical weathering)
and, at this time, there are no palynological reports on
this unit. According to the paleogeographic reconstruc-
tions for the late Paleozoic (e.g., Cawood and Buchan,
2007), the TPG was supposedly located in a higher
paleolatitudinal position than the late Paleozoic Patago-
nian basins, and therefore the paleoclimatic conditions
would have been colder during its deposition. However,
caution must be taken with this interpretation, mainly
because the TPG is part of the Western Domain of the
Antarctic Peninsula (Vaughan and Storey, 2000), which
has been regarded as a suspect terrane and even as al-
lochthonous to the rest of the terranes of the Antarctic
Peninsula (Willan, 2003).

6. Conclusions

This contribution presents the first palynological
record for the late Paleozoic in Chile. The palynolo-
gical assemblage recorded in the DYC is composed
mainly of Gymnospermopsida pollen, with also Pte-
ridophyta and fungal spores. The studied association
indicates a humid environment of forests with an
undergrowth of ferns.

The palynological data indicate a Permian age
for the deposition of the DYC. This age is also sup-
ported by new U-Pb SHRIMP detrital zircon ages,
which constrain the maximum depositional age of
the DYC to the limit between the early Permian and
the middle Permian (ca. 270 Ma), confirming the
maximum depositional age obtained by previous
geochronological data (Hervé ef al., 2003).

The available data indicate that the allochtho-
nous hypothesis for the DYC is not completely
proved, and an autochthonous tectonic setting
(with respect to Patagonia) could also be a possible
interpretation.
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