Aluviones históricos en Antofagasta y su relación con eventos El Niño/Oscilación del Sur

Gabriel Vargas
Departamento de Geología, Universidad de Chile. Plaza Errázuriz 863, Santiago, Chile
gvargas@ucv.cl

Dirección actual: Département de Géologie et Océanographie, Université Bordeaux I.
Avenue des Facultés, 33405 Talence-Cédex, France
gvargas@geocean.u-bordeaux.fr

Luc Ortlieb
Institut de Recherche pour le Développement (IRD), 32, Avenue Henri Varagnat, F-33143 Béziers Cedex, France

José Rutllant
Departamento de Geofísica, Universidad de Chile,
Blanco Encalada 2085, Santiago, Chile

RESUMEN

La costa del Desierto de Atacama está sometida a un clima de extrema aridez caracterizado, en la ciudad de Antofagasta, por un promedio de precipitaciones anuales de 4 mm (1904-1998). Sin embargo, la ocurrencia esporádica de precipitaciones intensas junto con la ubicación geomorfológica de la ciudad, la hacen susceptible de ser afectada por flujos de barro y detritos ("aluviones"). La ocurrencia de aluviones durante el siglo XX fue abordada a partir del estudio de crónicas de periódicos (desde 1916), registros instrumentales de precipitación (desde 1904) y la observación de secciones de depósitos aluviales con contenido de restos históricos de origen antrópico (principalmente después de 1900). Junto con esto, la relación con eventos El Niño se estudió a partir de la comparación de datos de crónicas históricas, datos de Índice de Oscilación del Sur (IOS), y datos de precipitaciones en Antofagasta. Entre 1916 y 1999, la ciudad fue afectada por inundaciones o aluviones en siete oportunidades: en 1925, 1930, dos veces en 1940, 1982, 1987 y 1991, de los cuales los más importantes ocurrieron en 1940 y 1991. En todas las oportunidades las lluvias ocurrieron durante el invierno de la fase de desarrollo de eventos El Niño (ENOS, de intensidad muy fuerte o moderada), y formaron parte de sistemas frontales provenientes desde el sur que afectaron, además, a gran parte del norte de Chile. El clima convexo de las tormentas es responsable de la gran variabilidad espacial que han mostrado las precipitaciones en distintas zonas de la costa, durante un mismo evento lluvioso. A partir de la comparación de datos de precipitación anual en Antofagasta con tendencias de escala global y regional de la temperatura del aire y de la superficie del océano, se sugiere una coincidencia entre períodos con mayor ocurrencia de precipitaciones y condiciones de escala interdecal del sistema oceano-atmósfera global. Durante el siglo XX, los eventos aluviales en la costa del norte del país coincidieron con los períodos de aumento sostenido de anomalías regionales y globales de la temperatura del aire, o de anomalías positivas de la temperatura superficial del mar (entre 1925 y 1942 - 1947 y a partir de 1977).

Palabras claves: El Niño, ENOS, Aluvión, Flujo de Detritos, Desierto de Atacama, Antofagasta, Chile.

ABSTRACT

Historic mudflows in Antofagasta, Chile, and their relationship to the El Niño/Southern Oscillation events.

The coastal zone of the Atacama Desert is submitted to an extremely arid climate, characterized in Antofagasta, by mean annual rainfall of 4 mm (1904-1998). However, the sporadic occurrence of heavy rainfall, together with the geomorphologic situation of the city, may produce debris and mud flows ("aluviones"). The occurrence of alluvial flows during the 20th century was investigated through the study of newspapers (available from 1916), instrumental data of precipitation (from 1904) and the observation of alluvial deposits which include anthropic remains (principally after 1900). The relationship between these evidences of alluvial activity with the occurrence of El Niño events was examined through a comparison between historical data, SOI (Southern Oscillation Index) data, and rainfall data in Antofagasta. Between 1916 and 1999, the city was affected by alluvial events in seven opportunities: 1925, 1930, twice in 1940, 1982, 1997 and 1991, with the most important episodes in 1940 and 1991. In all the cases, the rains occurred during the winter period of the development phase of El Niño (ENOS) events (very strong to moderate intensity), and were associated to frontal systems coming from higher latitudes, which also struck a major part of northern Chile. The convective character of the rainsorms is the cause of the great spatial and temporal variability in the precipitations, within the same rainfall event. The comparison of annual rainfall data in Antofagasta with tendencies, at both regional and global scales, of the air temperature and the sea surface temperature, shows a coincidence between periods with more important precipitations and particular conditions, at an interdecadal scale, of the ocean-atmosphere global system. During the 20th century, alluvial episodes in the coastal area of northern Chile were coeval with periods during which a systematic increase of regional and global anomalies of the temperature of the air, and positive anomalies of the sea surface temperature were observed (between 1925 and 1942-1947, and from 1971 onwards).

Key words: El Niño, ENOS, Alluvial events, Debris Flow, Atacama Desert, Antofagasta, Chile

INTRODUCCION

La costa del Norte Grande de Chile se encuentra actualmente sometida a un clima de extrema aridez que se origina en complejos mecanismos de interacción océano-atmosfera-terreno (Lettau y Costa, 1976; Rutllant, 1977; Rutllant, 1985; Rutllant et al., 1996). En un contexto regional, el Anticiclón Subtropical del Pacífico Suroriental (APSO) somete a gran parte del margen oeste de América del Sur a una gran estabilidad atmosférica, originada en la subsistencia de aire seco y cálido que contrasta con el aire marino fresco y húmedo (Fig. 1). La preva-lencia, durante todo el año, de este rasgo de la circulación atmosférica de gran escala, limita o atenua el desplazamiento hacia el norte de perturba-ciones frontales provenientes del cinturón de los vientos del oeste en latitudes medias y altas. La circulación atmosférica superficial asociada con los bordes septentrionales y orientales de este anticiclón no solo impulsa la corriente de Humboldt sino que además genera procesos de surgencia o afloramiento costero favoreciendo la persistencia de bajas temperaturas en la superficie del mar, que a su vez refuerzan la estabilidad asociada al APSO. Una capa de inversión térmica, resultante de la subsistencia anteriormente mencionada, caracteriza en forma casi permanente la atmósfera de la costa del Norte Grande a unos 1000 m de altitud (Fig. 2).

Por otra parte la Cordillera de Los Andes, con más de 4.000 m de altura, constituye una barrera para la humedad proveniente del océano Atlántico y limita las lluvias de verano en el Altiplano ("invierno boliviano") a ocasiones lluviosas en la región preandina (Fig. 2). Así, el desierto más árido del planeta se caracteriza en el área costera por el desarrollo de abundante nubosidad baja ("camanchaca"), temperaturas medias diarias entre 13°C (invierno) y 20°C (verano), y precipitaciones anuales promedio de 3 a 4 mm (H. Fuenzalida). La nubosidad baja, limitada en su desarrollo vertical por la base de la inversión térmica, es generalmente retenida por la Cordillera de la Costa que, con 1.000 a 2.000 m s.n.m., constituye una eficiente barrera a la penetración de humedad hacia el desierto interior. No obstante, perturbaciones atmosféricas atrapadas en la costa

FIG. 1. Distribución de la presión atmosférica superficial (a nivel del mar), según Schwerdtfeger (1976), promediada para los meses de a: invierno austral (junio, julio, agosto), y b: verano austral (diciembre, enero y febrero) (20=1.026 mb, 85=951.6 mb). A: zona de convergencia superficial, o de baja presión, B: zona de convergencia superficial, o de baja presión. APSO: Anticiclón del Pacífico Suroriental. Las flechas negras indican la dirección del viento geostrofico. La flecha vacía indica la ubicación aproximada de la corriente oceánico fría de Humboldt.

produce periódicamente entradas de camanchaca por levantamiento de la base de la inversión térmica (Rutllant et al., 1996).

Sin embargo, el Desierto de Atacama, y en particular la costa del Norte Grande en la cual se ubica la ciudad de Antofagasta, se ve esporádicamente afectado por tormentas convectivas que pueden generar escorrentías aluviales de gran magnitud.

FIG. 2. Esquema de los principales rasgos geomorfológicos y dominios climáticos de la vertiente occidental de la Cordillera de los Andes. 22°S. Se indica, también, la distribución vertical de la temperatura de la atmósfera baja en la costa, señalando la ubicación aproximada de la capa de inversión térmica.
SITUACIÓN GEOMORFOLOGICA DE ANTOFAGASTA

Antofagasta se encuentra ubicada en una angosta franja emplazada entre el Escarpe Costero, abrupto límite occidental de la Cordillera de la Costa, y la línea de costa (Fig. 3). Esta franja está constituida por terrazas marinas, en su mayoría pleistocenas, sobre las cuales se disponen abanicos aluviales de edad pleistoceno a holoceno. Su ancho varía entre 100 m en el sector sur (Caleta Coioso) y 3 km en la parte norte (sector de quiebra-de Las Conchas), y su altitud fluctúa desde el nivel del mar hasta aproximadamente los 250 m s.n.m. al pie del acantilado costero (Fig. 4). La disposición de las terrazas marinas confiere a esta franja una morfología escalonada, sobre las cuales se disponen los abanicos aluviales.

En el sector de la ciudad de Antofagasta, estos abanicos reciben aportes de una serie de quebradas mayores que drenan la Cordillera de la Costa, entre las cuales destacan, por el área de sus hoya hidrográficas, La Chumba, Salar del Carmen, La Cadena y La Negra (25.6 km², 33 km², 21 km² y 43 km², respectivamente) (Fig. 4).

Las quebradas menores que desembocan en el sector central de la ciudad se asocian a hoya hidrográficas de menor importancia areal, pero con un fuerte desnivel topográfico relacionado al Escarpe Costero (quebradas Farellones, El Ancla, Baquedano, Uribe y El Toro, con áreas de drenaje de 3.8 km², 1.3 km², 0.6 km², 0.5 km² y 3.2 km², respectivamente). En este mismo sector, los depósitos aluviales del Pleistoceno y Holoceno se caracterizan por una matriz de mayor granulometría, dado la menor disponibilidad de sedimentos colícos en las áreas de drenaje. En los sectores norte y sur de Antofagasta, en cambio, al norte de la quebrada Bonilla, y al sur de las quebradas Caliche y La Negra, la mayor disponibilidad de sedimentos colícos en los hoya hidrográficas, o en la franja costera, favorece la generación de depósitos aluviales con mayor porcentaje de arena en la matriz (Fig. 5).

Finalmente, el gran desnivel topográfico entre el bloque montañoso y la franja costera, acentuado aún más por el Escarpe Costero, confiere gran energía a los flujos aluviales. Junto con ésto, el fuerte mantecado hacia el océano y el gran fracturamiento de los estratos volcánicos de la Formación La

**FIG. 3.** Esquema de la situación geomorfológica de la ciudad de Antofagasta en el sector de Quebrada Baquedano (escaño de edificaciones exagerada respecto de la morfología). Los flujos aluviales permanecen encajados en la quebradas hasta desemboecer en la franja costera. La deposición aluvial ocurre, principalmente, en la superficie de los abanicos helocenos.
FIG. 4. Mapa topográfico del área de Antofagasta y sus alrededores, indicando los límites de las hoya hidrográficas que drenan la vertiente occidental de la Cordillera de la Costa.

Negra en el sector (García, 1967; Ferraria y Di Biase, 1976; Vargas, 1996) favorece la generación de bloques desprendidos para ser transportados, lo cual puede conferir una mayor peligrosidad a los flujos de detritos (‘aluviones’) que esporádicamente bajan hacia la ciudad (Figs. 3 y 5).

El mejor conocido de estos eventos, tanto por su magnitud como por la disponibilidad de datos, es el de junio de 1991.
CARACTERIZACION METEOROLÓGICA DEL EVENTO ALUVIAL DE 1991

Los días 17 y 18 de junio de 1991 un fuerte temporal de viento y lluvia afectó a gran parte del centro-norte de Chile, alcanzando también la costa de la Región de Antofagasta. En la ciudad de Antofagasta, una repentina y violenta lluvia cayó desde las 00:30 h hasta las 03:30 h del 18 de junio, provocando aluviones menores en inundaciones entre las 02:00 y 03:00 h, y fuertes aluviones alrededor de las 04:00 h (El Mercurio de Antofagasta, ediciones del 18 y 19 de junio de 1991).

Las condiciones meteorológicas asociadas a la ocurrencia de los aluviones en 1991 en Antofagasta, han sido descritas por Garreaud y Rutllant (1996). La permanencia cuasiestacionaria de un anticiclón de bloqueo en el extremo suroeste de América del Sur, provocó el desvío hacia el norte de un sistema frontal frío desde la región de los Óestes (Fig. 6). La llegada de este sistema hasta el extremo norte del país fue favorecida por el debilitamiento del APSO. Finalmente, la actividad convectiva asociada a este sistema frontal fue reforzada tanto por la advección de aire cálido marino bajo la capa de inversión...
témica, como por la ocurrencia de una zona de divergencia en altura, asociada a un núcleo de máxima velocidad del viento, ambos aspectos también concomitantes con el debilitamiento del APSC, en el marco de desarrollo de un evento El Niño de intensidad moderada. Las lluvias fueron precedidas por vientos de hasta 20 m/s en la noche del 17 de Junio, tuvieron una intensidad media entre 5 y 14 mm/h, y alcanzaron por momentos hasta 24 mm/h. En total, las precipitaciones acumularon entre 14 y 42 mm en tres estaciones pluvimétricas separadas por menos de 20 km (Garreau y Rutilant, 1996).

CARACTERIZACION GEOLOGICA DEL EVENTO ALUVIAL DE 1991

Los sectores más afectados por los aluviones fueron aquellos ubicados pendiente abajo de la desembocadura de las quebradas de mayor hoya hidrográfica (Salar del Carmen, La Cadena y La Negra), pero también de las quebradas menores que desembocan directamente en el sector central de la ciudad (El Ancla, Baquedano, Uribe y El Toro), así como de las quebradas Jardinas del Sur y El Huáscar, situadas inmediatamente al sur de esta (El Mercurio de Antofagasta, 18 y 19 de junio de

<table>
<thead>
<tr>
<th>Quebrada</th>
<th>Área de la hoya hidrográfica (km²)</th>
<th>Número de depositos históricos</th>
<th>Facies de los depositos de 1991</th>
<th>Máxima altura (observada) de finos</th>
</tr>
</thead>
</table>
| La Cadena | 21.0                             | 2 (post-1980)                 | Espesor depósito: 50 cm  
Moldeada a mala selección:  
60% grava angulosa (5 a 10 cm tamaño típico), leve orientación y gradación granulométrica de clastos,  
18% de arena, 32% de limo y arcillas | 3 m                               |
| Baquedano | 0.6                              | 2 (post-1980)                 | Espesor depósito: 1 m  
Moldeada a mala selección:  
70% grava angulosa (5 a 15 cm tamaño típico), leve orientación y gradación granulométrica de clastos,  
30% matriz de arena y escaso limo | 2 m                               |
| El Toro   | 3.2                              | 1 (1991)                      | Espesor depósito: 3 m  
Moldeada a mala selección: 60% grava angulosa (5 a 15 cm tamaño típico, bloques de hasta 1 m de diámetro), clastos orientados  
17% de arena, 3% de limo y arcillas | 6 m                               |
| La Negra  | 43.0                             | 1 (1991)                      | Espesor depósito: 1 m  
Mala selección: 50% grava angulosa (5 a 10 cm tamaño típico), clastos orientados e imbricados, 47% de arena, 3% de limo y arcillas | 3 m                               |

1991). En todos los casos los mayores daños ocurrieron en las quebradas y en las zonas de depósito proximal de los abanicos más recientes (Fig. 5).

Los flujos aluviales más importantes se produjeron al cabo de 3 horas de comenzadas las lluvias (El Mercurio de Antofagasta, 18 y 19 de junio de 1991), y habrían sido precedidos, según testigos, por un frente de altura muy superior a la altura media de los mismos. Los depósitos y marcas generadas en algunas quebradas permitieron precisar estas observaciones. En la tabla 1 se muestra que la relación observada entre la altura máxima de los flujos y los depósitos generados en algunas quebradas varía entre 6:1 y 2:1. Tanto las observaciones de terreno como las crónicas de periódicos y relatos de testigos, permiten suponer que el origen de estas olas en los flujos aluviales podría haberse debido a estrechamientos locales de las quebradas, y al colapso de entramamientos por la presencia de labores de extracción de áridos en algunos cauces.

Las facies originadas por los flujos corresponden a sedimentos típicos de flujos de detritos en fondos de quebrada y abanico aluvial. Sin embargo, existen diferencias entre los sedimentos originados en los distintos sectores de la ciudad (Tablas 1 y 2). Estas diferencias se relacionan con el tamaño y pendiente de los cauces de la hoya hidrográfica, y la naturaleza del material disponible para movilizar tanto en las quebradas como en los sectores proximales de los abanicos, tal como se ha descrito anteriormente (Figs. 4 y 5). En el sector de la ciudad cercano a las quebradas, entre las quebradas La Negra y Salar del Carmen, los flujos generaron depósitos proximales masivos compuestos por 50 a 80% de clastos entre 5 y 15 cm, contenidos en matriz de arena, grava fina y escaso limo (3-5%). Bloques de hasta 1 m de diámetro se observaron en sedimentos de los sectores proximales cercanos a la desembocadura de las quebradas ubicadas entre El Toro y El Ancla. Hacia el norte de la quebrada Bonilla y hacia el sur de la
TABLA 2. RELACIÓN ENTRE AMBIENTE FISIOGRÁFICO, FACES SEDIMENTARIAS Y NUMERO DE DEPÓSITOS HISTÓRICOS EN ALGUNAS SECCIONES ESTRATIGRÁFICAS UBICADAS INMEDIATAMENTE AL SUR DE ANTOFAGASTA.

<table>
<thead>
<tr>
<th>Ubicación (Fig. 4)</th>
<th>Ambiente fisiográfico</th>
<th>Número de depósitos históricos*</th>
<th>Espesor de los depósitos y caracterización de facies (porcentajes de granulometría relativos al peso total de la muestra)</th>
</tr>
</thead>
</table>
| Coloso (8 km al sur de La Negra) | Superficie como aluvial | 5 (post-1905) | Espesor depósitos: 20 a 40 cm  
Maína selección granulométrica; clastos de grava angulosa de 2 a 5 cm tamaño típico, dispuestos sin orden en matriz de arena y grava fina |
| Coloso | Superficie como aluvial | 4 (post-1905) | Espesor depósitos: 20 a 40 cm  
Maína selección granulométrica; clastos de grava angulosa de 2 a 5 cm tamaño típico, dispuestos sin orden en matriz de arena |
| Coloso | Ladera con abundante arena eólica | 2 (post-1905) | Espesor depósitos: 20 cm  
Regular a buena selección granulométrica, 85% arena eólica, 10% grava angulosa de 1 a 3 cm tamaño típico, 5% lito |
| Roca Roja (6 km al sur de La Negra) | Fondo de quebrada (post-1986) | 3 | Espesor depósitos: 30 cm a 1 m  
Regular selección (granulométrica); gradación lateral de facies de canal (60 a 80% de clastos de grava angulosa de 5 a 15 cm tamaño típico), a facies de desborde (40 a 70% de arena, con laminación y gradación granulométrica de clastos) |
| El Huasco (5 km al sur de La Negra) | Superficie como aluvial | 1 (1991) | Espesor depósito: 1 m  
Maína selección granulométrica; 30 a 40% de grava angulosa (algunos bloques de hasta 46 a 50 cm) 60 a 70% de matriz arena |
| Jardines del Sur (1 km al sur de La Negra) | Fondo de quebrada (post-1960) | 3 | Espesor depósitos: 20 a 40 cm  
Maína selección granulométrica; clastos de grava angulosa dispuestos sin orden en matriz de arena |
| Antofagasta (costa cerca del puerto) | Sectors distal de deposición aluvial | 1 (1991) | Espesor depósito 20 cm  
Regular selección granulométrica; 50 a 60% de grava angulosa, leve ondulación y gradación granulométrica de clastos |

Los depósitos históricos fueron identificados por su contenido de basura y diarios.

quebrada Jardines del Sur los flujos originaron depósitos con clastos de menor tamaño y mayor porcentaje de matriz de arena (40 a 70%), debido a la mayor disponibilidad de material fino (arena de depositación eólica) para transportar.

OCURRENCE OF ALLUVIANS DURING THE 20TH CENTURY IN ANTOFAGASTA

El estudio de secciones aluviales recientes, junto con el análisis de crónicas de periódicos y datos de precipitación, permitió precisar una cron-
FIG. 7. Vista general de la ciudad de Antofagasta y secciones de depósitos históricos: a- vista panorámica de la ciudad (hacia el SE); b- vista cauce abajo (hacia el noroeste) de la Quebrada Baquedano, en el sector de la desembocadura a la franja costera; c- depósito histórico en Quebrada Baquedano. El sedimento constituye un depósito masivo compuesto por grava y bloques dispuestos en matriz de arena media a gruesa y escasa limo; d- vista panorámica (hacia el sureste) de una sección de abanico aluvial en Caleta Coloso (1994). La sección está compuesta, principalmente, por sedimentos aluviales (proximal a medio) y eólica (supralitorales) depositados durante el Pleistoceno Superior y Holoceno; e- parte superior de la secuencia anterior, compuesta por depósitos históricos posteriores a 1995 con basura o restos de paja intercalados. Corresponden a depósitos de flujos de detritos en sector proximal-medio de abanico aluvial; f- sección estratigráfica de depósitos históricos dispuestos en la parte superior de la secuencia holocena. La edad de deposición se infririó a partir del contenido de restos de origen antropico (basura, paja, restos de revistas o periódicos, etc.) intercalados entre los sedimentos, junto con la observación de registros pluviométricos y crónicas de periódicos.
<table>
<thead>
<tr>
<th>Edad del litoral</th>
<th>Aluviones o inundaciones</th>
<th>Inicio de las lluvias</th>
<th>Termodriversión</th>
<th>Horas de ocurrencia de aluviones o inundaciones</th>
<th>Otros lugares afectados</th>
<th>Other places affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1921-1922</td>
<td>3 de julio</td>
<td>12:00 h. orobol</td>
<td>20:00 h. con</td>
<td>23:30 h. 30 min</td>
<td>18.3 P</td>
<td>18.3 P</td>
</tr>
<tr>
<td>1923-1924</td>
<td>2 de agosto</td>
<td>02:00 h. orobol</td>
<td>06:00 h. por</td>
<td>11:00 h. Orobol y en la ciudad</td>
<td>23.2 P</td>
<td>23.2 P</td>
</tr>
<tr>
<td>1925-1926</td>
<td>13 de octubre</td>
<td>00:00 h. orobol</td>
<td>03:00 h.</td>
<td>09:00 h. orobol y en la ciudad</td>
<td>18.0 P</td>
<td>18.0 P</td>
</tr>
<tr>
<td>1927-1928</td>
<td>12 de noviembre</td>
<td>00:00 h. orobol</td>
<td>05:00 h.</td>
<td>12:00 h. orobol y en la ciudad</td>
<td>23.2 P</td>
<td>23.2 P</td>
</tr>
<tr>
<td>1929-1930</td>
<td>27 de julio</td>
<td>00:00 h. orobol</td>
<td>09:00 h.</td>
<td>18:00 h. orobol y en la ciudad</td>
<td>22.4 P</td>
<td>22.4 P</td>
</tr>
<tr>
<td>1931-1932</td>
<td>18 de junio</td>
<td>00:00 h. orobol</td>
<td>03:00 h.</td>
<td>12:00 h. orobol y en la ciudad</td>
<td>22.4 P</td>
<td>22.4 P</td>
</tr>
</tbody>
</table>

**Notas:**

- Numeración según la información recopilada del periódico El Mercurio de Antofagasta, fundado en 1896.
- Documentación proporcionada por el Instituto Meteorológico Nacional (IMN) y Universidad Católica de Norte (UCN).
interestratificada en sedimentos recientes permitió inferir la época de su deposición, posteriormente a la fundación de Antofagasta a fines del siglo XIX (Tabla 2, Fig. 7). La información recopilada a partir del periódico 'El Mercurio de Antofagasta' permitió precisar la fecha exacta de ocurrencia de aluviones e inundaciones desde 1916, así como algunas características relacionadas con la ocurrencia de las tormentas y los flujos aluviales. Esta información se resumida en la tabla 3. En ella se señala que Antofagasta ha sido afectada por inundaiones de importancia en siete ocasiones entre 1916 y 1995, pero que en sólo cinco de estas oportunidades ocurrieron aluviones: el 21 de agosto de 1930, el 12 de junio de 1940, el 24 de mayo de 1982, el 27 de julio de 1987 y el 18 de junio de 1991. Este último fue el evento más importante en relación a los volúmenes de material depositado y los daños provocados en la ciudad. Inundaciones, sin ocurrencia comprobada de aluviones, se originaron además los días 3 de julio de 1925 y 24 de julio de 1940. En todos los casos en que se generaron flujos aluviales las lluvias fueron intensas y duraron sólo algunas horas (~13 horas). En todas las ocasiones para las cuales se tiene información, los aluviones o inundaciones se generaron entre 1 y 4 horas después del inicio de las lluvias o después que éstas se tornaron intensas. Es interesante destacar que, el 27 de julio de 1987, antes de la ocurrencia de aluviones las lluvias se extendieron de manera débil e intermitente por cerca de 13 horas, sin generarse flujos, pero que al cabo de 1 hora de lluvia intensa éstos afectaron parte de la ciudad.

La tabla 3 muestra que en todos los casos las lluvias que han afectado a Antofagasta formaron parte de perturbaciones frontales de latitudes medias durante el invierno austral que afectaron también otras localidades del centro-norte de Chile, incluyendo nevazones en la zona andina y preandina.

Es importante destacar también el carácter convectivo de la precipitación, que se traduce en la zonación que han mostrado las tormentas tanto en el área de Antofagasta como a lo largo de la costa del Norte Grande. Así, mientras en determinadas ocasiones algunos sectores se han visto seriamente afectados, otros no han estado expuestos a las tormentas con la misma severidad. La lluvia del 24 de mayo de 1982, por ejemplo, cayó más intensamente sobre la costa ubicada inmediatamente al sur de la ciudad, originando aluviones en El Huascar y Coloso, pero sin embargo no acumuló más de 5,5 mm en Antofagasta. A estos rasgos de la distribución especial de las lluvias se agrega el hecho que en seis de los siete casos descritos en la tabla 3 la precipitación se inició en el período nocturno, cuando el flujo catabálico por la ladera andina favorece la convergencia en el sector próximo a la costa (Ruttllant, 1985; Ruttllant et al., 1998).

ANOMALIAS OCEANO-CLIMATICAS Y SITUACIONES SINOPTICAS ASOCIADAS CON EVENTOS EL NIÑO

El fenómeno El Niño, que corresponde a la fase cálida de la Oscilación del Sur (ENOS), constituye un estado extremo en las condiciones oceano-atmosféricas de la cuenca del Pacífico cuyas repercusiones climáticas se dejan sentir en gran parte del planeta. La Oscilación del Sur (OS) se expresa a través de un índice (IOS) que se define como la diferencia normalizada de la presión atmosférica entre los polos de la OS ubicados convencionalmente en Tahiti (polar oriental representativo del APSO) y Darwin, Australia (polar occidental representativo de la depresión indonesial-norte de Australia). Así, cuando el APSO se debilita (IOS negativo), y con él los vientos alísicos (particularmente en la región occidental del Pacífico ecuatorial), se presentan anomalías positivas en la temperatura superficial del mar en el Pacífico ecuatorial central y oriental y a lo largo de la costa oeste de Sudamérica. El otro extremo de la OS, caracterizado por valores positivos del IOS (extremo frío o La Niña) presenta un APSO reforzado, alísicos intensos y anomalías negativas de la temperatura superficial del mar que reemplazan a las anomalías positivas en la fase opuesta. Durante los eventos ENOS, la inrupción de aguas subtropicales cálidas y la profundización de la termoclima y nutricional, inducen además importantes cambios tanto en el ecosistema como en los ecosistemas marinos costeros de la región (Ahnz y Fahrbach, 1996).
En el margen occidental de América del Sur, los eventos ENOS se relacionan con fuertes anomalías negativas de la precipitación en Colombia, y anomalías positivas en las regiones costeras del Ecuador, norte del Perú y Chile central. El debilitamiento del APOSO y los frecuentes bloqueos en el régimen de los Oestes, ya descritos para esta última zona como mecanismos responsables del exceso de precipitación (Rutllant y Fuenzalida, 1991), están fuertemente modulados por oscilaciones intraestacionales que explican importantes diferencias de un mes a otro dentro de un mismo invierno lluvioso (J. Rutllant y P. Acetuno)².

**RELACIÓN ENTRE EVENTOS EL NIÑO Y ALUVIONES EN ANTOFAGASTA**

La relación entre eventos El Niño y la ocurrencia de lluvias generadoras de aluviones o inundaciones, durante el siglo XX, en Antofagasta, es mostrada a partir de la gráfica del IOS para los meses de otoño e invierno de los años en cuestión (Fig. 8). Al igual que para las anomalías positivas de la precipitación en Chile central asociadas con El Niño (Quinn y Neal, 1983; Rutllant y Fuenzalida, 1991), estas ocurren durante el invierno anterior al calentamiento estival de las aguas superciliares del mar.

**Fig. 8.** Relación entre precipitaciones mensuales en Antofagasta e Índice de Oscilación del Sur (IOS), para los años en que ocurrieron aluviones o inundaciones en la ciudad. Las precipitaciones han ocurrido durante el invierno de la fase de desarrollo de eventos ENOS de moderada a fuerte intensidad (valores negativos de IOS). Símbolos de los gráficos: ■ Pp – · IOS

en la costa oeste de América del Sur, y previo a la culminación del evento, por lo que, exceptuando el caso de 1987, los valores negativos del IOE siguen descendiendo hasta el verano austral siguiente. Como muestra la figura 8, en términos del IOE el evento de 1987 culminó en forma poco habitual a mediados de ese año, habiendo comenzado a fines de 1986 (Rutlant et al., 1992). Sin embargo, si se consideran las temperaturas superiores del mar en el Pacífico ocular centro-oriental (Niño 3-4), el evento termina en febrero de 1986 (Trenberth, 1997).

La observación de los datos permite señalar que en los casos en que han ocurrido tormentas importantes, éstas han coincidido con el desarrollo de un evento El Niño de moderada o gran intensidad. En las dos oportunidades de mayor impacto en la ciudad, coincidentes con los eventos aluviales más importantes de este siglo (junio de 1940 y junio de 1991), el IOE mantuvo valores negativos durante varios meses antes y después del fenómeno (Fig. 8). Durante el evento El Niño de 1940, la costa del Norte Grande fue afectada por severas tormentas en dos oportunidades (Tabla 3). En junio de 1940 las lluvias cayeron sobre Antofagasta, causando aluviones de magnitud considerable en la ciudad, mientras que en julio de ese mismo año las lluvias afectaron principalmente la costa ubicada al norte de Antofagasta, hasta Tocopilla, causando graves aluviones en instalaciones mineras (Tabla 3).

Tomando en cuenta que un evento lluvioso basta para elevar el total anual de precipitaciones en la zona, el registro de las precipitaciones anuales en Antofagasta, a partir de 1904, permite señalar que no todos los eventos El Niño han implicado años de elevada precipitación en la ciudad, aunque sí en todos estos años han ocurrido durante el desarrollo de un episodio El Niño (Fig. 9a). También es posible observar que los años de elevada precipitación, y en particular la ocurrencia de tormentas generadoras de aluviones e inundaciones, no se sucedieron con una frecuencia constante a lo largo del siglo XX, sino que se concentraron principalmente entre los años 1925-1941 y 1982-1991. Ambos períodos coinciden también con las mayores anomalías globales en la temperatura superficial del mar luego de sostenidos periodos de calentamiento, aproximadamente entre 1910-1940 y 1975-1990 (IPCC, 1995). La Tabla 4 muestra los promedios de precipitación para los períodos en los cuales han ocurrido aluviones o inundaciones, como también para el resto de los intervalos. El promedio de precipitación anual para los periodos 1925-1941 y 1982-1991 es de 13,1 mm/año y 8 mm/año, respectivamente, mientras que para los intervalos sin ocurrencia de flujos detríticos, éste varía entre 1,1 mm/año y 5 mm/año. La distribución de las precipitaciones anuales a lo largo del siglo sugiere un patrón interdecadal de las lluvias en Antofagasta.

Datos históricos sobre precipitaciones en el Desierto de Atacama durante los últimos dos siglos, sugieren también una fuerte dependencia de los episodios lluviosos con eventos El Niño. La mayoría de los eventos de precipitación de los siglos XIX (6 de 8) y XX (15 de 24), en el Norte Grande de Chile, ocurrieron durante años El Niño de moderados...

...da o gran intensidad (Ortlieb, 1995). Entre éstos destacan las lluvias acácidas durante los eventos fuertes (F) o muy fuertes (MF) de 1877-78 (MF), 1884-85 (F), 1918-20 (F), 1925-26 (F), 1940-41 (MF), 1972-73 (F), 1982-83 (MF) y 1991-92 (F).

RASGOS GEOMORFOLOGICOS ASOCIADOS A LA OCURRENcia E INTENSIFICACION DE LOS FLUJOS ALUVIALES EN ANTOFAGASTA.

Los datos relativos a la geomorfología y clima de la zona permiten señalar que, además de los factores necesarios para la ocurrencia de flujos aluviales en Antofagasta (fuerte desnivel topográfico entre el bloque montañoso y la franja costera, ocurrencia esporádica de intensas lluvias, disponibilidad de material para ser transportado por los flujos), existen otros factores que eventualmente intensifican el fenómeno. En este sentido, el fuerte aumento de pendiente de las quebradas asociado al Escarpe...
Costero, imprime mayor energía a los flujos antes de la depositación en los abanicos aluviales de la franja costera, mientras que el fuerte fracturamiento y disposición espacial (fuerte manto al oeste) de los estratos de la Formación La Negra, puede potenciar la generación de bloques disponibles para ser transportados. Estrechamientos locales de los cauces, junto con la presencia de laborios de extracción de áridos pueden también intensificar el impacto de los flujos. Hauser (1997) señaló, además, que una escasa infiltración de las aguas de lluvia en las rocas de la Formación La Negra facilitaría la generación de deslizamientos en la cubierta détritica de las laderas de los montes.

La diferencia en el tipo de material disponible para movilizar, tanto en las hoya hidrográficas como en las zonas altas de la franja costera, produciría diferencias en la composición granulométrica de los depósitos generados. Entre las quebradas Farellones y El Toro, en el sector central de la ciudad, los flujos movilizan detritos más gruesos y con menor porcentaje de matriz, lo cual les confiere un mayor poder destructivo.

La sedimentación aluvial en el área ocurre principalmente en las zonas proximales de los abanicos aluviales holocenos de la franja costera, y sólo parcialmente en las quebradas.

**EVENTOS EL NIÑO Y ALUVIONES EN LA COSTA DE LA REGIÓN DE ANTOFAGASTA**

Los datos muestran una importante relación entre ocurrencia de lluvias intensas generadoras de aluviones en la región de Antofagasta y eventos ENOS de moderada a gran intensidad, tanto durante el siglo XX, como también durante el siglo XIX. El análisis climatológico del fenómeno de 1991 (Garreaud y Ruillant, 1996), sugiere que la ocurrencia de precipitaciones en el norte de Chile es producto de la conjunción de varias condiciones atmosféricas relacionadas al desarrollo de eventos El Niño. Estos factores constituyen manifestaciones típicas de eventos ENOS, que debieron repetirse también en los otros casos de precipitaciones intensas en Antofagasta, tal como se desprende de la información histórica (Tabla 3), así como de los datos de IOS y de temperatura superficial del mar (Fig. 8). Las lluvias, tanto en Antofagasta, en particular, como en el Desierto de Atacama, en general, ocurren durante los meses de invierno de la fase de desarrollo de eventos El Niño (Fig. 8). Esta misma relación entre anomalías positivas de precipitación y fases cálidas de ENOS, ha sido también mostrada en Chile central (Rutillant y Fuenzalida, 1991).

El fuerte carácter convectivo de los sistemas frontales que marginalmente afectan la costa del norte del país, es responsable de la gran zonación, tanto a nivel local como regional (ciudad y región de Antofagasta respectivamente), de las lluvias. Esto a su vez origina que, en determinadas ocasiones las precipitaciones afecten más intensamente a ciertas localidades respecto de otras, o que la región pueda ser afectada por fuertes precipitaciones en más de una oportunidad durante un mismo período inverno, tal como ocurrió en 1940.

**VARIACIÓN INTERDECADAL DE PRECIPITACIONES**

La ocurrencia de precipitaciones en Antofagasta, y en particular de periodos con mayor frecuencia de ocurrencia de precipitaciones durante el siglo XX, parece haber estado asociada a condiciones de orden interdecadal, de escala global y local, de la temperatura superficial del mar, de la temperatura del aire y de otros parámetros atmosféricos. Rutillant et al. (1998) señalaron un calentamiento brusco, de 0,9 hasta 0,5°C, de las aguas del litoral chileno desde fines de 1976 (entre 19° y 40°S), concomitantes con debilitamientos esporádicos de la inversión de subsistencia, dibilitamiento de la cobertura nubosa y vientos más energéticos a la hora de mayor insolación. Mayores valores de temperatura del aire y presión atmosférica en Antofagasta, a partir de 1977, han sido también descritos por Romero (1985). A una escala global, la ocurrencia de periodos con mayores precipitaciones en Antofagasta coincide con tendencias globales de aumento de la temperatura del aire (Parker et al., 1994; Jones, 1994; Nicholls et al., 1996) (Fig. 9a), y con tendencias globales de mayores temperaturas de la superficie del mar (Zhang et al., 1997; Mantua et al., 1997) (Fig. 9b). Al respecto de esto último, Zhang et al. (1997), mediante análisis de series de temperatura superficial del mar entre 1900 y 1993, muestran que los periodos comprendidos entre los años 1925-1942 y a partir de 1977 en adelante, se han caracterizado por valores mayores que los periodos precedentes. En
Este mismo sentido, Mantua et al. (1997) mostraron, a partir de análisis integrados de series de temperatura del aire y del mar en la cuenca del océano Pacífico tropical y en el Hemisferio Norte, inversiones de orden interdecadal de la tendencia de anomalías de temperatura, ocurridas alrededor de los años 1925, 1947 y 1977, en relación con cambios en la dinámica de los ecosistemas marinos de la región (Fig. 9b).

Así, la variación interdecadal de la precipitación anual en Antofagasta, parece reflejar condiciones regionales y globales de aumento sostenido de la temperatura superficial del mar y del aire. Esto podría traducirse como una mayor posibilidad, durante estos períodos, de ocurrencia de intensas lluvias generadoras de aluviones en la región, tal como sucedió durante el siglo XX. La observación anterior resulta relevante al momento de interepretar, a partir de análisis lineales de datos instrumentales, probabilidades de ocurrencia a futuro de eventos aluviales en la zona. Hauser (1997), por ejemplo, ha calculado un periodo de retorno de 50 años para lluvias generadoras de aluviones (suponiendo un mínimo de 30 mm/24 h). Si bien este cálculo coincide con los dos eventos más importantes del siglo recien pasado en Antofagasta, es decir, las tormentas del 13 de junio de 1940 y del 18 de junio de 1991, no considera la ocurrencia de eventos locales, como el ocurrido en mayo de 1982 al sur de la ciudad, debido en parte al carácter convectivo de las tormentas. En el mismo sentido, y debido probablemente a esta misma característica de las lluvias, los dos importantes eventos acaecidos en un mismo año en la región (el 13 de junio y el 24 de julio de 1940), demuestran que la factibilidad de ocurrencia de lluvias en la zona está relacionada con condiciones oceánico-atmosféricas vinculadas a la ocurrencia de eventos El Niño, y depende de la conjunción de una serie de factores meteorológicos, en general difíciles de anticipar a escala de días o semanas (Garreau and Rutlant, 1996).

Consideraciones similares a las descritas anteriormente para la costa del Desierto de Atacama, en relación a variabilidad interanual e interdecadal de ENOS, debieron ser tomadas en cuenta al momento de analizar la variabilidad de las lluvias en relación con ocurrencia de aluviones, inundaciones o sequías en Chile central, tal como lo han mostrado Rutlant y Fuenzalida (1991).

**EVENTOS EL NIÑO, ANOMALÍAS DE PRECIPITACIÓN Y ALUVIONES EN OTRAS ÁREAS DEL DESIERTO DE ATACAMA**

El análisis de los datos instrumentales de precipitaciones en Perú para la segunda mitad del siglo XX, no muestra, salvo para la costa norte del país, una relación clara entre determinadas fases de ENOS y anomalías de precipitación (Mancia, 1994; Romo-Gaspalay y Ronchail, 1998). Por el contrario, el análisis de datos mensuales muestra que tanto anomalías positivas como fuertes déficits de precipitaciones, en particular en el sur de Perú, pueden estar asociadas a ambas fases, cálida y fría, de ENOS (Romo-Gaspalay y Ronchail, 1998). A pesar de esto, los importantes flujos acaecidos en septiembre de 1997 en la costa del sur de Perú (El Correo, 16 de septiembre de 1997), contemporáneamente al evento El Niño más fuerte del siglo recien pasado, justifican mayores estudios de detalle respecto de la relación causa-efecto en la generación de flujos de detritos en esta zona.

Una relación más clara parece darse en la costa del norte de Perú, en la región de Piura, donde anomalías positivas de precipitación ocurren durante fases cálidas (El Niño), mientras que anomalías negativas de precipitación ocurren durante fases frías (La Niña) de ENOS (Romo-Gaspalay y Ronchail, 1998). Inundaciones y anomalías positivas de precipitación en esta región durante eventos El Niño, particularmente durante el evento 1982-1983, estarían asociadas a un desplazamiento hacia el sur de la Zona de Convergencia Intertropical, acompañado de un debilitamiento de los alisios sobre el Pacífico tropical este (Acetuno, 1988).

Por otro lado, tendencia a un aumento de las precipitaciones en el Altiplano durante fases frías de ENOS, y a una disminución de las mismas durante fases cálidas, ha sido señalada por diferentes autores (Acetuno y Montecinos, 1993; Romo-Gaspalay y Ronchail, 1998). Este último puede constituir una fuente de error en la interpretación climática de flujos de detritos en quebradas que conectan el Altiplano con la costa, principalmente al analizar fuentes históricas, ya que la observación de flujos aluviales en esta última zona puede muchas veces corresponder a anomalías de precipitación ocurridas en zonas altas de la cordillera.
EVENTOS EL NIÑO DURANTE EL HOLOCENO

El conjunto de datos expuestos muestra que los depósitos recientes de las secuencias aluviales de la costa de la región de Antofagasta, bien preservados gracias al clima de aridez imperante en la zona, son representativos de la ocurrencia de eventos El Niño, y de condiciones de escala interdecadal de la atmósfera y de la superficie del océano. Sin embargo, esta representatividad es válida sólo para el último periodo de tiempo en el cual la dinámica del clima ha sido similar a la que se conoce en la actualidad. Recientemente, Reddell et al. (1999), sobre la base a estudios de testigos lacustres en Ecuador, han señalado que la dinámica actual de los eventos El Niño, con una periodicidad de ocurrencia de 2 a 6,5 años, habría comenzado a manifestarse después de los 7.000 años B.P., instalándose definitivamente alrededor de los 5.000 B.P. Sandweiss et al. (1999) sugieren que el Holoceno medio, entre 8.000 y 3.000 B.P., se habría caracterizado, en forma global, por un progresivo incremento de la variabilidad climática y cambios arqueológicos y culturales, instaurándose la variabilidad climática actual a partir de los 5.800 B.P. Al respecto, Vargas y Ortlieb (1998), muestran que la dinámica actual de sedimentación aluvial en la costa de la región de Antofagasta se instaló en algún momento del Holoceno, después de los 9.000 B.P., y probablemente después de los 7.000 B.P. Durante el Pleistoceno tardío, y hasta comienzos del Holoceno, la dinámica de los eventos aluviales habría estado caracterizada, al menos por períodos, por una frecuencia e intensidad distinta de las precipitaciones, posiblemente en relación a una distinta organización, o intensidad de fenómenos, del sistema océano-atmosfera en la cuenca del Pacífico, lo cual podría a su vez implicar una distinta relación causa efecto entre lluvias y flujos aluviales (Vargas y Ortlieb, 1998). Esto último podría cuestionar las interpretaciones de ocurrencia de eventos El Niño a partir de registros aluviales de los períodos glacial y tardiglacial, como por ejemplo en la región del sur de Perú (Keefet et al., 1998).

Considerando que la información en relación a la dinámica a diferentes escalas de tiempo de los eventos ENOS es aún incompleta, así como el gran impacto ecológico y socio-económico de los eventos El Niño, la dinámica y variaciones climáticas asociadas con ENOS ameritan de mayores investigaciones. En este sentido, estudios de la interacción actual océano-atmosfera y su impacto en el continente han sido recientemente implementados en la costa del Desierto de Atacama (Ruttant et al., 1998). Por otra parte, primeros resultados de investigaciones en sedimentos marinos de la Bahía de Mejillones (23°S), muestran un gran potencial para estudios paleoceanográficos, junto con el registro de situaciones climáticas de escala decadal, entre los cuales es también susceptible de encontrar aquellos asociados a situaciones de tipo ENOS (Valdés, 1998; Ortlieb et al., 2000).

AGRADECIMIENTOS

Este trabajo fue realizado en el marco de un convenio de cooperación entre los Departamentos de Geología y Geofísica de la Universidad de Chile y el IRD (ex- ORSTOM) (Programa Paleoclimateología y Variabilidad Climática).

Los autores quisiéran agradecer, de manera especial, a la Dirección del periódico El Mercurio de Antofagasta el haber facilitado el acceso a sus archivos. A la Sección Meteorología del Departamento de Física de la Universidad Católica del Norte (Universidad Católica del Norte) se agradece el haber proporcionado los datos de precipitación de su estación meteorológica. Varias personas ayudaron también a la obtención de datos, discusiones, apoyo de terreno o acceso a equipamiento. Entre ellos destacan: R. Zuleta y R. Espejo (Universidad Católica del Norte), A. Montecinos, S. Fiebóllo y S. Elgueta (Universidad de Chile), G. Héral, P. Roperch y A. Laven (IRD), C. Marquardt y V. García (Universidad de Chile), N. Guzmán (Universidad de Antofagasta), N. Leiva y S. Villagrán (IRD).

Los autores agradecen también las constructivas sugerencias de los revisores, Dr. Mario Pino (Universidad Austral de Chile), Dr. R. Thorson (University of Connecticut) y un revisor anónimo.
REFERENCIAS


Madison.


Madison, U.S.A.


Aluviones históricos en Antofagasta, Chile y su relación con eventos El Niño/Oscilación del Sur


